MicPie commited on
Commit
e26a839
·
1 Parent(s): 776177a

update total task number

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -77,7 +77,7 @@ The UnpredicTable dataset consists of web tables formatted as few-shot tasks for
77
 
78
  There are several dataset versions available:
79
 
80
- * [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,350 tasks from 23,744 unique websites.
81
 
82
  * [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
83
 
@@ -188,7 +188,7 @@ The UnpredicTable datasets do not come with additional data splits.
188
 
189
  ### Curation Rationale
190
 
191
- Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,350 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
192
 
193
  ### Source Data
194
 
 
77
 
78
  There are several dataset versions available:
79
 
80
+ * [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
81
 
82
  * [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
83
 
 
188
 
189
  ### Curation Rationale
190
 
191
+ Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
192
 
193
  ### Source Data
194