ajosh0504 commited on
Commit
d524374
·
verified ·
1 Parent(s): af71dae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +117 -0
README.md CHANGED
@@ -1,3 +1,120 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ task_categories:
4
+ - question-answering
5
+ - text-retrieval
6
+ language:
7
+ - en
8
+ tags:
9
+ - vector search
10
+ - semantic search
11
+ - retrieval augmented generation
12
+ size_categories:
13
+ - 1K<n<10K
14
  ---
15
+
16
+ ## Overview
17
+
18
+ This dataset consists of AirBnB listings consisting of property descriptions, reviews and other metadata.
19
+
20
+ We also provide embeddings (using OpenAI's text-embedding-small model) of the property description so you can use this dataset for building Search and RAG applications.
21
+
22
+ ## Dataset Structure
23
+
24
+ Here is a full list of fields contained in the dataset. Some noteworthy fields have been highlighted:
25
+
26
+ - _id: Unique identifier for the listing
27
+ - listing_url: URL for the listing on AirBnB
28
+ - **name**: Title or name of the listing
29
+ - **summary**: Short overview of listing
30
+ - **space**: Short description of the space, amenities etc.
31
+ - **description**: Full listing description
32
+ - neighborhood_overview: Description of surrounding area
33
+ - notes: Special instructions or notes
34
+ - transit: Nearby public transportation options
35
+ - access: How to access the property. Door codes etc.
36
+ - interaction: Host's preferred interaction medium
37
+ - house_rules: Rules guests must follow
38
+ - **property_type**: Type of property
39
+ - room_type: Listing's room category
40
+ - bed_type: Type of bed provided
41
+ - minimum_nights: Minimum stay required
42
+ - maximum_nights: Maximum stay allowed
43
+ - cancellation_policy: Terms for cancelling booking
44
+ - first_review: Date of first review
45
+ - last_review: Date of latest review
46
+ - **accommodates**: Number of guests accommodated
47
+ - **bedrooms**: Number of bedrooms available
48
+ - **beds**: Number of beds available
49
+ - number_of_reviews: Total reviews received
50
+ - bathrooms: Number of bathrooms available
51
+ - **amenities**: List of amenities offered
52
+ - **price**: Nightly price for listing
53
+ - security_deposit: Required security deposit amount
54
+ - cleaning_fee: Additional cleaning fee charged
55
+ - extra_people: Fee for additional guests
56
+ - guests_included: Number of guests included in the base price
57
+ - **images**: Links to listing images
58
+ - host: Information about the host
59
+ - **address**: Physical address of listing
60
+ - **availability**: Availability dates for listing
61
+ - **review_scores**: Aggregate review scores
62
+ - reviews: Individual guest reviews
63
+ - weekly_price: Discounted price for week
64
+ - monthly_price: Discounted price for month
65
+ - reviews_per_month: Average monthly review count
66
+ - **space_embeddings**: Embeddings of the property description in the `space` field
67
+
68
+ ## Usage
69
+
70
+ This dataset can be useful for:
71
+ - Building Hybrid Search applications. Combine vector search using the embeddings provided, with full text search using the exhaustive list of metadata fields.
72
+ - Building Multimodal Search applications. Some listings have images associated with them. Use a model like [CLIP](https://huggingface.co/openai/clip-vit-base-patch32) to generate image and text emebeddings.
73
+ - Building RAG applications
74
+
75
+ ## Ingest Data
76
+
77
+ To experiment with this dataset using MongoDB Atlas, first [create a MongoDB Atlas account](https://www.mongodb.com/cloud/atlas/register?utm_campaign=devrel&utm_source=community&utm_medium=organic_social&utm_content=Hugging%20Face%20Dataset&utm_term=apoorva.joshi).
78
+
79
+ You can then use the following script to load this dataset into your MongoDB Atlas cluster:
80
+
81
+ ```
82
+ import os
83
+ from pymongo import MongoClient
84
+ import datasets
85
+ from datasets import load_dataset
86
+ from bson import json_util
87
+
88
+ # MongoDB Atlas URI and client setup
89
+ uri = os.environ.get('MONGODB_ATLAS_URI')
90
+ client = MongoClient(uri)
91
+
92
+ # Change to the appropriate database and collection names
93
+ db_name = 'your_database_name' # Change this to your actual database name
94
+ collection_name = 'airbnb_embeddings' # Change this to your actual collection name
95
+
96
+ collection = client[db_name][collection_name]
97
+
98
+ # Load the "airbnb_embeddings" dataset from Hugging Face
99
+ dataset = load_dataset("MongoDB/airbnb_embeddings")
100
+
101
+ insert_data = []
102
+
103
+ # Iterate through the dataset and prepare the documents for insertion
104
+ # The script below ingests 1000 records into the database at a time
105
+ for item in dataset['train']:
106
+ # Convert the dataset item to MongoDB document format
107
+ doc_item = json_util.loads(json_util.dumps(item))
108
+ insert_data.append(doc_item)
109
+
110
+ # Insert in batches of 1000 documents
111
+ if len(insert_data) == 1000:
112
+ collection.insert_many(insert_data)
113
+ print("1000 records ingested")
114
+ insert_data = []
115
+
116
+ # Insert any remaining documents
117
+ if len(insert_data) > 0:
118
+ collection.insert_many(insert_data)
119
+ print("Data Ingested")
120
+ ```