--- language: - ko license: cc-by-nc-4.0 dataset_info: features: - name: index dtype: string - name: question dtype: string - name: choice_a dtype: string - name: choice_b dtype: string - name: choice_c dtype: string - name: choice_d dtype: string - name: answer dtype: string - name: category dtype: string - name: image dtype: image splits: - name: test num_bytes: 9681522.0 num_examples: 240 download_size: 3340794 dataset_size: 9681522.0 configs: - config_name: default data_files: - split: test path: data/test-* --- # K-DTCBench We introduce **K-DTCBench**, a newly developed Korean benchmark featuring both computer-generated and handwritten documents, tables, and charts. It consists of 80 questions for each image type and two questions per image, summing up to 240 questions in total. This benchmark is designed to evaluate whether vision-language models can process images in different formats and be applicable for diverse domains. All images are generated with made-up values and statements for evaluation purposes only. We scanned hand-written documents/tables/charts, or created digital objects with matplotlib library to build K-DTCBench. The proportions of digital and hand-written images are equal, each constituting 50%. For more details, Please refer to the VARCO-VISION technical report. - **Technical Report:** [VARCO-VISION: Expanding Frontiers in Korean Vision-Language Models](https://arxiv.org/pdf/2411.19103) - **Blog(Korean):** [VARCO-VISION Technical Report Summary](https://ncsoft.github.io/ncresearch/95ad8712e60063e9ac97538504ac3eea0ac530af) - **Huggingface Version Model:** [NCSOFT/VARCO-VISION-14B-HF](https://huggingface.co/NCSOFT/VARCO-VISION-14B-HF)
Category | Image | K-DTCBench |
---|---|---|
document | ![]() |
question: 보고서의 주요 내용이 아닌 것은 무엇인가요?
A: 안전 인프라 확충 B: 재난 및 사고 예방 체계 구축 C: 시민 안전 교육 강화 D: 긴급 대응 시스템 개선 |
table | ![]() |
question: 인프라 구축 항목의 점수는 몇 점인가요?
A: 4 B: 6 C: 8 D: 10 |
chart | ![]() |
question: 직장인들이 퇴근 후 두 번째로 선호하는 활동은 무엇인가요?
A: 운동 B: 여가활동 C: 자기개발 D: 휴식 |