File size: 7,131 Bytes
20b3e87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516ea84
 
 
 
 
 
 
 
20b3e87
 
197fdb9
516ea84
 
20b3e87
b61ef82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8bb4c
b61ef82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20b3e87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b61ef82
20b3e87
1fd6275
 
 
20b3e87
 
 
 
 
 
b61ef82
20b3e87
 
 
 
b61ef82
20b3e87
 
b61ef82
ed62000
b61ef82
1fd6275
20b3e87
 
 
 
 
b61ef82
20b3e87
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging

import datasets


_CITATION = """\
@inproceedings{,
    title = "",
    author = "Garagiola, Nazareno",
    year = "2022",
    url = ""
}
"""

_DESCRIPTION = """Dataset used to train a NER model"""
_URL = "https://raw.githubusercontent.com/NazaGara/betoNER/main/data/wikiner/"
_TRAINING_FILE = "train.conllu"


class WikinerConfig(datasets.BuilderConfig):
    """BuilderConfig"""

    def __init__(self, **kwargs):
        """BuilderConfig
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(WikinerConfig, self).__init__(**kwargs)


class Wikiner(datasets.GeneratorBasedBuilder):
    """Wikiner dataset."""

    BUILDER_CONFIGS = [
        WikinerConfig(
            name="wikiner",
            version=datasets.Version("1.1.0"),
            description="wikiner dataset",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "pos_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "ACRNM",
                                "ADJ",
                                "ADV",
                                "ALFS",
                                "ART",
                                "BACKSLASH",
                                "CARD",
                                "CC",
                                "CCAD",
                                "CCNEG",
                                "CM",
                                "CODE",
                                "COLON",
                                "CQUE",
                                "CSUBF",
                                "CSUBI",
                                "CSUBX",
                                "DM",
                                "DOTS",
                                "FS",
                                "INT",
                                "LP",
                                "NC",
                                "NEG",
                                "NMEA",
                                "NMON",
                                "NP",
                                "ORD",
                                "PAL",
                                "PDEL",
                                "PE",
                                "PERCT",
                                "PPC",
                                "PPO",
                                "PPX",
                                "PREP",
                                "QT",
                                "QU",
                                "REL",
                                "RP",
                                "SE",
                                "SEMICOLON",
                                "SLASH",
                                "SYM",
                                "UMMX",
                                "VCLIfin",
                                "VCLIger",
                                "VCLIinf",
                                "VEadj",
                                "VEfin",
                                "VEger",
                                "VEinf",
                                "VHadj",
                                "VHfin",
                                "VHger",
                                "VHinf",
                                "VLadj",
                                "VLfin",
                                "VLger",
                                "VLinf",
                                "VMadj",
                                "VMfin",
                                "VMger",
                                "VMinf",
                                "VSadj",
                                "VSfin",
                                "VSger",
                                "VSinf",
                            ]
                        )
                    ),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-PER",
                                "I-PER",
                                "B-ORG",
                                "I-ORG",
                                "B-LOC",
                                "I-LOC",
                                "B-MISC",
                                "I-MISC",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAINING_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": downloaded_files["train"]},
            ),
        ]

    def _generate_examples(self, filepath):
        logging.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            pos_tags = []
            ner_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "pos_tags": pos_tags,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        pos_tags = []
                        ner_tags = []
                else:
                    splits = line.split(" ")
                    tokens.append(splits[0])
                    pos_tags.append(splits[1])
                    ner_tags.append(splits[2].rstrip())
            # last example
            if tokens:
                yield guid, {
                    "id": str(guid),
                    "tokens": tokens,
                    "pos_tags": pos_tags,
                    "ner_tags": ner_tags,
                }