File size: 67,636 Bytes
9e554cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
from __future__ import annotations
import json
import logging
import math
import os
import sys
import hashlib
from dataclasses import dataclass, field

import torch
import numpy as np
from PIL import Image, ImageOps
import random
import cv2
from skimage import exposure
from typing import Any

import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng
from modules.rng import slerp # noqa: F401
from modules.sd_hijack import model_hijack
from modules.sd_samplers_common import images_tensor_to_samples, decode_first_stage, approximation_indexes
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.paths as paths
import modules.face_restoration
import modules.images as images
import modules.styles
import modules.sd_models as sd_models
import modules.sd_vae as sd_vae
from ldm.data.util import AddMiDaS
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion

from einops import repeat, rearrange
from blendmodes.blend import blendLayers, BlendType


# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
opt_f = 8


def setup_color_correction(image):
    logging.info("Calibrating color correction.")
    correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
    return correction_target


def apply_color_correction(correction, original_image):
    logging.info("Applying color correction.")
    image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
        cv2.cvtColor(
            np.asarray(original_image),
            cv2.COLOR_RGB2LAB
        ),
        correction,
        channel_axis=2
    ), cv2.COLOR_LAB2RGB).astype("uint8"))

    image = blendLayers(image, original_image, BlendType.LUMINOSITY)

    return image.convert('RGB')


def apply_overlay(image, paste_loc, index, overlays):
    if overlays is None or index >= len(overlays):
        return image

    overlay = overlays[index]

    if paste_loc is not None:
        x, y, w, h = paste_loc
        base_image = Image.new('RGBA', (overlay.width, overlay.height))
        image = images.resize_image(1, image, w, h)
        base_image.paste(image, (x, y))
        image = base_image

    image = image.convert('RGBA')
    image.alpha_composite(overlay)
    image = image.convert('RGB')

    return image

def create_binary_mask(image):
    if image.mode == 'RGBA' and image.getextrema()[-1] != (255, 255):
        image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0)
    else:
        image = image.convert('L')
    return image

def txt2img_image_conditioning(sd_model, x, width, height):
    if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models

        # The "masked-image" in this case will just be all 0.5 since the entire image is masked.
        image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
        image_conditioning = images_tensor_to_samples(image_conditioning, approximation_indexes.get(opts.sd_vae_encode_method))

        # Add the fake full 1s mask to the first dimension.
        image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
        image_conditioning = image_conditioning.to(x.dtype)

        return image_conditioning

    elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models

        return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)

    else:
        # Dummy zero conditioning if we're not using inpainting or unclip models.
        # Still takes up a bit of memory, but no encoder call.
        # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
        return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)


@dataclass(repr=False)
class StableDiffusionProcessing:
    sd_model: object = None
    outpath_samples: str = None
    outpath_grids: str = None
    prompt: str = ""
    prompt_for_display: str = None
    negative_prompt: str = ""
    styles: list[str] = None
    seed: int = -1
    subseed: int = -1
    subseed_strength: float = 0
    seed_resize_from_h: int = -1
    seed_resize_from_w: int = -1
    seed_enable_extras: bool = True
    sampler_name: str = None
    batch_size: int = 1
    n_iter: int = 1
    steps: int = 50
    cfg_scale: float = 7.0
    width: int = 512
    height: int = 512
    restore_faces: bool = None
    tiling: bool = None
    do_not_save_samples: bool = False
    do_not_save_grid: bool = False
    extra_generation_params: dict[str, Any] = None
    overlay_images: list = None
    eta: float = None
    do_not_reload_embeddings: bool = False
    denoising_strength: float = None
    ddim_discretize: str = None
    s_min_uncond: float = None
    s_churn: float = None
    s_tmax: float = None
    s_tmin: float = None
    s_noise: float = None
    override_settings: dict[str, Any] = None
    override_settings_restore_afterwards: bool = True
    sampler_index: int = None
    refiner_checkpoint: str = None
    refiner_switch_at: float = None
    token_merging_ratio = 0
    token_merging_ratio_hr = 0
    disable_extra_networks: bool = False

    scripts_value: scripts.ScriptRunner = field(default=None, init=False)
    script_args_value: list = field(default=None, init=False)
    scripts_setup_complete: bool = field(default=False, init=False)

    cached_uc = [None, None]
    cached_c = [None, None]

    comments: dict = None
    sampler: sd_samplers_common.Sampler | None = field(default=None, init=False)
    is_using_inpainting_conditioning: bool = field(default=False, init=False)
    paste_to: tuple | None = field(default=None, init=False)

    is_hr_pass: bool = field(default=False, init=False)

    c: tuple = field(default=None, init=False)
    uc: tuple = field(default=None, init=False)

    rng: rng.ImageRNG | None = field(default=None, init=False)
    step_multiplier: int = field(default=1, init=False)
    color_corrections: list = field(default=None, init=False)

    all_prompts: list = field(default=None, init=False)
    all_negative_prompts: list = field(default=None, init=False)
    all_seeds: list = field(default=None, init=False)
    all_subseeds: list = field(default=None, init=False)
    iteration: int = field(default=0, init=False)
    main_prompt: str = field(default=None, init=False)
    main_negative_prompt: str = field(default=None, init=False)

    prompts: list = field(default=None, init=False)
    negative_prompts: list = field(default=None, init=False)
    seeds: list = field(default=None, init=False)
    subseeds: list = field(default=None, init=False)
    extra_network_data: dict = field(default=None, init=False)

    user: str = field(default=None, init=False)

    sd_model_name: str = field(default=None, init=False)
    sd_model_hash: str = field(default=None, init=False)
    sd_vae_name: str = field(default=None, init=False)
    sd_vae_hash: str = field(default=None, init=False)

    is_api: bool = field(default=False, init=False)

    def __post_init__(self):
        if self.sampler_index is not None:
            print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)

        self.comments = {}

        if self.styles is None:
            self.styles = []

        self.sampler_noise_scheduler_override = None
        self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
        self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
        self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
        self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
        self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise

        self.extra_generation_params = self.extra_generation_params or {}
        self.override_settings = self.override_settings or {}
        self.script_args = self.script_args or {}

        self.refiner_checkpoint_info = None

        if not self.seed_enable_extras:
            self.subseed = -1
            self.subseed_strength = 0
            self.seed_resize_from_h = 0
            self.seed_resize_from_w = 0

        self.cached_uc = StableDiffusionProcessing.cached_uc
        self.cached_c = StableDiffusionProcessing.cached_c

    @property
    def sd_model(self):
        return shared.sd_model

    @sd_model.setter
    def sd_model(self, value):
        pass

    @property
    def scripts(self):
        return self.scripts_value

    @scripts.setter
    def scripts(self, value):
        self.scripts_value = value

        if self.scripts_value and self.script_args_value and not self.scripts_setup_complete:
            self.setup_scripts()

    @property
    def script_args(self):
        return self.script_args_value

    @script_args.setter
    def script_args(self, value):
        self.script_args_value = value

        if self.scripts_value and self.script_args_value and not self.scripts_setup_complete:
            self.setup_scripts()

    def setup_scripts(self):
        self.scripts_setup_complete = True

        self.scripts.setup_scrips(self, is_ui=not self.is_api)

    def comment(self, text):
        self.comments[text] = 1

    def txt2img_image_conditioning(self, x, width=None, height=None):
        self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}

        return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)

    def depth2img_image_conditioning(self, source_image):
        # Use the AddMiDaS helper to Format our source image to suit the MiDaS model
        transformer = AddMiDaS(model_type="dpt_hybrid")
        transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
        midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
        midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)

        conditioning_image = images_tensor_to_samples(source_image*0.5+0.5, approximation_indexes.get(opts.sd_vae_encode_method))
        conditioning = torch.nn.functional.interpolate(
            self.sd_model.depth_model(midas_in),
            size=conditioning_image.shape[2:],
            mode="bicubic",
            align_corners=False,
        )

        (depth_min, depth_max) = torch.aminmax(conditioning)
        conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
        return conditioning

    def edit_image_conditioning(self, source_image):
        conditioning_image = shared.sd_model.encode_first_stage(source_image).mode()

        return conditioning_image

    def unclip_image_conditioning(self, source_image):
        c_adm = self.sd_model.embedder(source_image)
        if self.sd_model.noise_augmentor is not None:
            noise_level = 0 # TODO: Allow other noise levels?
            c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
            c_adm = torch.cat((c_adm, noise_level_emb), 1)
        return c_adm

    def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None):
        self.is_using_inpainting_conditioning = True

        # Handle the different mask inputs
        if image_mask is not None:
            if torch.is_tensor(image_mask):
                conditioning_mask = image_mask
            else:
                conditioning_mask = np.array(image_mask.convert("L"))
                conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
                conditioning_mask = torch.from_numpy(conditioning_mask[None, None])

                # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
                conditioning_mask = torch.round(conditioning_mask)
        else:
            conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])

        # Create another latent image, this time with a masked version of the original input.
        # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
        conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
        conditioning_image = torch.lerp(
            source_image,
            source_image * (1.0 - conditioning_mask),
            getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
        )

        # Encode the new masked image using first stage of network.
        conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))

        # Create the concatenated conditioning tensor to be fed to `c_concat`
        conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
        conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
        image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
        image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)

        return image_conditioning

    def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
        source_image = devices.cond_cast_float(source_image)

        # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
        # identify itself with a field common to all models. The conditioning_key is also hybrid.
        if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
            return self.depth2img_image_conditioning(source_image)

        if self.sd_model.cond_stage_key == "edit":
            return self.edit_image_conditioning(source_image)

        if self.sampler.conditioning_key in {'hybrid', 'concat'}:
            return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)

        if self.sampler.conditioning_key == "crossattn-adm":
            return self.unclip_image_conditioning(source_image)

        # Dummy zero conditioning if we're not using inpainting or depth model.
        return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)

    def init(self, all_prompts, all_seeds, all_subseeds):
        pass

    def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
        raise NotImplementedError()

    def close(self):
        self.sampler = None
        self.c = None
        self.uc = None
        if not opts.persistent_cond_cache:
            StableDiffusionProcessing.cached_c = [None, None]
            StableDiffusionProcessing.cached_uc = [None, None]

    def get_token_merging_ratio(self, for_hr=False):
        if for_hr:
            return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio

        return self.token_merging_ratio or opts.token_merging_ratio

    def setup_prompts(self):
        if isinstance(self.prompt,list):
            self.all_prompts = self.prompt
        elif isinstance(self.negative_prompt, list):
            self.all_prompts = [self.prompt] * len(self.negative_prompt)
        else:
            self.all_prompts = self.batch_size * self.n_iter * [self.prompt]

        if isinstance(self.negative_prompt, list):
            self.all_negative_prompts = self.negative_prompt
        else:
            self.all_negative_prompts = [self.negative_prompt] * len(self.all_prompts)

        if len(self.all_prompts) != len(self.all_negative_prompts):
            raise RuntimeError(f"Received a different number of prompts ({len(self.all_prompts)}) and negative prompts ({len(self.all_negative_prompts)})")

        self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
        self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]

        self.main_prompt = self.all_prompts[0]
        self.main_negative_prompt = self.all_negative_prompts[0]

    def cached_params(self, required_prompts, steps, extra_network_data, hires_steps=None, use_old_scheduling=False):
        """Returns parameters that invalidate the cond cache if changed"""

        return (
            required_prompts,
            steps,
            hires_steps,
            use_old_scheduling,
            opts.CLIP_stop_at_last_layers,
            shared.sd_model.sd_checkpoint_info,
            extra_network_data,
            opts.sdxl_crop_left,
            opts.sdxl_crop_top,
            self.width,
            self.height,
        )

    def get_conds_with_caching(self, function, required_prompts, steps, caches, extra_network_data, hires_steps=None):
        """
        Returns the result of calling function(shared.sd_model, required_prompts, steps)
        using a cache to store the result if the same arguments have been used before.

        cache is an array containing two elements. The first element is a tuple
        representing the previously used arguments, or None if no arguments
        have been used before. The second element is where the previously
        computed result is stored.

        caches is a list with items described above.
        """

        if shared.opts.use_old_scheduling:
            old_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(required_prompts, steps, hires_steps, False)
            new_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(required_prompts, steps, hires_steps, True)
            if old_schedules != new_schedules:
                self.extra_generation_params["Old prompt editing timelines"] = True

        cached_params = self.cached_params(required_prompts, steps, extra_network_data, hires_steps, shared.opts.use_old_scheduling)

        for cache in caches:
            if cache[0] is not None and cached_params == cache[0]:
                return cache[1]

        cache = caches[0]

        with devices.autocast():
            cache[1] = function(shared.sd_model, required_prompts, steps, hires_steps, shared.opts.use_old_scheduling)

        cache[0] = cached_params
        return cache[1]

    def setup_conds(self):
        prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height)
        negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True)

        sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
        total_steps = sampler_config.total_steps(self.steps) if sampler_config else self.steps
        self.step_multiplier = total_steps // self.steps
        self.firstpass_steps = total_steps

        self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, total_steps, [self.cached_uc], self.extra_network_data)
        self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, total_steps, [self.cached_c], self.extra_network_data)

    def get_conds(self):
        return self.c, self.uc

    def parse_extra_network_prompts(self):
        self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)

    def save_samples(self) -> bool:
        """Returns whether generated images need to be written to disk"""
        return opts.samples_save and not self.do_not_save_samples and (opts.save_incomplete_images or not state.interrupted and not state.skipped)


class Processed:
    def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
        self.images = images_list
        self.prompt = p.prompt
        self.negative_prompt = p.negative_prompt
        self.seed = seed
        self.subseed = subseed
        self.subseed_strength = p.subseed_strength
        self.info = info
        self.comments = "".join(f"{comment}\n" for comment in p.comments)
        self.width = p.width
        self.height = p.height
        self.sampler_name = p.sampler_name
        self.cfg_scale = p.cfg_scale
        self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
        self.steps = p.steps
        self.batch_size = p.batch_size
        self.restore_faces = p.restore_faces
        self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
        self.sd_model_name = p.sd_model_name
        self.sd_model_hash = p.sd_model_hash
        self.sd_vae_name = p.sd_vae_name
        self.sd_vae_hash = p.sd_vae_hash
        self.seed_resize_from_w = p.seed_resize_from_w
        self.seed_resize_from_h = p.seed_resize_from_h
        self.denoising_strength = getattr(p, 'denoising_strength', None)
        self.extra_generation_params = p.extra_generation_params
        self.index_of_first_image = index_of_first_image
        self.styles = p.styles
        self.job_timestamp = state.job_timestamp
        self.clip_skip = opts.CLIP_stop_at_last_layers
        self.token_merging_ratio = p.token_merging_ratio
        self.token_merging_ratio_hr = p.token_merging_ratio_hr

        self.eta = p.eta
        self.ddim_discretize = p.ddim_discretize
        self.s_churn = p.s_churn
        self.s_tmin = p.s_tmin
        self.s_tmax = p.s_tmax
        self.s_noise = p.s_noise
        self.s_min_uncond = p.s_min_uncond
        self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
        self.prompt = self.prompt if not isinstance(self.prompt, list) else self.prompt[0]
        self.negative_prompt = self.negative_prompt if not isinstance(self.negative_prompt, list) else self.negative_prompt[0]
        self.seed = int(self.seed if not isinstance(self.seed, list) else self.seed[0]) if self.seed is not None else -1
        self.subseed = int(self.subseed if not isinstance(self.subseed, list) else self.subseed[0]) if self.subseed is not None else -1
        self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning

        self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
        self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
        self.all_seeds = all_seeds or p.all_seeds or [self.seed]
        self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
        self.infotexts = infotexts or [info]
        self.version = program_version()

    def js(self):
        obj = {
            "prompt": self.all_prompts[0],
            "all_prompts": self.all_prompts,
            "negative_prompt": self.all_negative_prompts[0],
            "all_negative_prompts": self.all_negative_prompts,
            "seed": self.seed,
            "all_seeds": self.all_seeds,
            "subseed": self.subseed,
            "all_subseeds": self.all_subseeds,
            "subseed_strength": self.subseed_strength,
            "width": self.width,
            "height": self.height,
            "sampler_name": self.sampler_name,
            "cfg_scale": self.cfg_scale,
            "steps": self.steps,
            "batch_size": self.batch_size,
            "restore_faces": self.restore_faces,
            "face_restoration_model": self.face_restoration_model,
            "sd_model_name": self.sd_model_name,
            "sd_model_hash": self.sd_model_hash,
            "sd_vae_name": self.sd_vae_name,
            "sd_vae_hash": self.sd_vae_hash,
            "seed_resize_from_w": self.seed_resize_from_w,
            "seed_resize_from_h": self.seed_resize_from_h,
            "denoising_strength": self.denoising_strength,
            "extra_generation_params": self.extra_generation_params,
            "index_of_first_image": self.index_of_first_image,
            "infotexts": self.infotexts,
            "styles": self.styles,
            "job_timestamp": self.job_timestamp,
            "clip_skip": self.clip_skip,
            "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
            "version": self.version,
        }

        return json.dumps(obj)

    def infotext(self, p: StableDiffusionProcessing, index):
        return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)

    def get_token_merging_ratio(self, for_hr=False):
        return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio


def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
    g = rng.ImageRNG(shape, seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=seed_resize_from_h, seed_resize_from_w=seed_resize_from_w)
    return g.next()


class DecodedSamples(list):
    already_decoded = True


def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
    samples = DecodedSamples()

    for i in range(batch.shape[0]):
        sample = decode_first_stage(model, batch[i:i + 1])[0]

        if check_for_nans:
            try:
                devices.test_for_nans(sample, "vae")
            except devices.NansException as e:
                if devices.dtype_vae == torch.float32 or not shared.opts.auto_vae_precision:
                    raise e

                errors.print_error_explanation(
                    "A tensor with all NaNs was produced in VAE.\n"
                    "Web UI will now convert VAE into 32-bit float and retry.\n"
                    "To disable this behavior, disable the 'Automatically revert VAE to 32-bit floats' setting.\n"
                    "To always start with 32-bit VAE, use --no-half-vae commandline flag."
                )

                devices.dtype_vae = torch.float32
                model.first_stage_model.to(devices.dtype_vae)
                batch = batch.to(devices.dtype_vae)

                sample = decode_first_stage(model, batch[i:i + 1])[0]

        if target_device is not None:
            sample = sample.to(target_device)

        samples.append(sample)

    return samples


def get_fixed_seed(seed):
    if seed == '' or seed is None:
        seed = -1
    elif isinstance(seed, str):
        try:
            seed = int(seed)
        except Exception:
            seed = -1

    if seed == -1:
        return int(random.randrange(4294967294))

    return seed


def fix_seed(p):
    p.seed = get_fixed_seed(p.seed)
    p.subseed = get_fixed_seed(p.subseed)


def program_version():
    import launch

    res = launch.git_tag()
    if res == "<none>":
        res = None

    return res


def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None):
    if index is None:
        index = position_in_batch + iteration * p.batch_size

    if all_negative_prompts is None:
        all_negative_prompts = p.all_negative_prompts

    clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
    enable_hr = getattr(p, 'enable_hr', False)
    token_merging_ratio = p.get_token_merging_ratio()
    token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)

    uses_ensd = opts.eta_noise_seed_delta != 0
    if uses_ensd:
        uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)

    generation_params = {
        "Steps": p.steps,
        "Sampler": p.sampler_name,
        "CFG scale": p.cfg_scale,
        "Image CFG scale": getattr(p, 'image_cfg_scale', None),
        "Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
        "Face restoration": opts.face_restoration_model if p.restore_faces else None,
        "Size": f"{p.width}x{p.height}",
        "Model hash": p.sd_model_hash if opts.add_model_hash_to_info else None,
        "Model": p.sd_model_name if opts.add_model_name_to_info else None,
        "VAE hash": p.sd_vae_hash if opts.add_vae_hash_to_info else None,
        "VAE": p.sd_vae_name if opts.add_vae_name_to_info else None,
        "Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])),
        "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
        "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
        "Denoising strength": getattr(p, 'denoising_strength', None),
        "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
        "Clip skip": None if clip_skip <= 1 else clip_skip,
        "ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
        "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
        "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
        "Init image hash": getattr(p, 'init_img_hash', None),
        "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
        "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
        "Tiling": "True" if p.tiling else None,
        **p.extra_generation_params,
        "Version": program_version() if opts.add_version_to_infotext else None,
        "User": p.user if opts.add_user_name_to_info else None,
    }

    generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])

    prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
    negative_prompt_text = f"\nNegative prompt: {p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]}" if all_negative_prompts[index] else ""

    return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()


def process_images(p: StableDiffusionProcessing) -> Processed:
    if p.scripts is not None:
        p.scripts.before_process(p)

    stored_opts = {k: opts.data[k] if k in opts.data else opts.get_default(k) for k in p.override_settings.keys() if k in opts.data}

    try:
        # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
        # and if after running refiner, the refiner model is not unloaded - webui swaps back to main model here, if model over is present it will be reloaded afterwards
        if sd_models.checkpoint_aliases.get(p.override_settings.get('sd_model_checkpoint')) is None:
            p.override_settings.pop('sd_model_checkpoint', None)
            sd_models.reload_model_weights()

        for k, v in p.override_settings.items():
            opts.set(k, v, is_api=True, run_callbacks=False)

            if k == 'sd_model_checkpoint':
                sd_models.reload_model_weights()

            if k == 'sd_vae':
                sd_vae.reload_vae_weights()

        sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())

        res = process_images_inner(p)

    finally:
        sd_models.apply_token_merging(p.sd_model, 0)

        # restore opts to original state
        if p.override_settings_restore_afterwards:
            for k, v in stored_opts.items():
                setattr(opts, k, v)

                if k == 'sd_vae':
                    sd_vae.reload_vae_weights()

    return res


def process_images_inner(p: StableDiffusionProcessing) -> Processed:
    """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""

    if isinstance(p.prompt, list):
        assert(len(p.prompt) > 0)
    else:
        assert p.prompt is not None

    devices.torch_gc()

    seed = get_fixed_seed(p.seed)
    subseed = get_fixed_seed(p.subseed)

    if p.restore_faces is None:
        p.restore_faces = opts.face_restoration

    if p.tiling is None:
        p.tiling = opts.tiling

    if p.refiner_checkpoint not in (None, "", "None", "none"):
        p.refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(p.refiner_checkpoint)
        if p.refiner_checkpoint_info is None:
            raise Exception(f'Could not find checkpoint with name {p.refiner_checkpoint}')

    p.sd_model_name = shared.sd_model.sd_checkpoint_info.name_for_extra
    p.sd_model_hash = shared.sd_model.sd_model_hash
    p.sd_vae_name = sd_vae.get_loaded_vae_name()
    p.sd_vae_hash = sd_vae.get_loaded_vae_hash()

    modules.sd_hijack.model_hijack.apply_circular(p.tiling)
    modules.sd_hijack.model_hijack.clear_comments()

    p.setup_prompts()

    if isinstance(seed, list):
        p.all_seeds = seed
    else:
        p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]

    if isinstance(subseed, list):
        p.all_subseeds = subseed
    else:
        p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]

    if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
        model_hijack.embedding_db.load_textual_inversion_embeddings()

    if p.scripts is not None:
        p.scripts.process(p)

    infotexts = []
    output_images = []
    with torch.no_grad(), p.sd_model.ema_scope():
        with devices.autocast():
            p.init(p.all_prompts, p.all_seeds, p.all_subseeds)

            # for OSX, loading the model during sampling changes the generated picture, so it is loaded here
            if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
                sd_vae_approx.model()

            sd_unet.apply_unet()

        if state.job_count == -1:
            state.job_count = p.n_iter

        for n in range(p.n_iter):
            p.iteration = n

            if state.skipped:
                state.skipped = False

            if state.interrupted:
                break

            sd_models.reload_model_weights()  # model can be changed for example by refiner

            p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
            p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
            p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
            p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]

            p.rng = rng.ImageRNG((opt_C, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w)

            if p.scripts is not None:
                p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)

            if len(p.prompts) == 0:
                break

            p.parse_extra_network_prompts()

            if not p.disable_extra_networks:
                with devices.autocast():
                    extra_networks.activate(p, p.extra_network_data)

            if p.scripts is not None:
                p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)

            # params.txt should be saved after scripts.process_batch, since the
            # infotext could be modified by that callback
            # Example: a wildcard processed by process_batch sets an extra model
            # strength, which is saved as "Model Strength: 1.0" in the infotext
            if n == 0:
                with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
                    processed = Processed(p, [])
                    file.write(processed.infotext(p, 0))

            p.setup_conds()

            for comment in model_hijack.comments:
                p.comment(comment)

            p.extra_generation_params.update(model_hijack.extra_generation_params)

            if p.n_iter > 1:
                shared.state.job = f"Batch {n+1} out of {p.n_iter}"

            with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
                samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)

            if getattr(samples_ddim, 'already_decoded', False):
                x_samples_ddim = samples_ddim
            else:
                if opts.sd_vae_decode_method != 'Full':
                    p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
                x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)

            x_samples_ddim = torch.stack(x_samples_ddim).float()
            x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)

            del samples_ddim

            if lowvram.is_enabled(shared.sd_model):
                lowvram.send_everything_to_cpu()

            devices.torch_gc()

            state.nextjob()

            if p.scripts is not None:
                p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)

                p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
                p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]

                batch_params = scripts.PostprocessBatchListArgs(list(x_samples_ddim))
                p.scripts.postprocess_batch_list(p, batch_params, batch_number=n)
                x_samples_ddim = batch_params.images

            def infotext(index=0, use_main_prompt=False):
                return create_infotext(p, p.prompts, p.seeds, p.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=p.negative_prompts)

            save_samples = p.save_samples()

            for i, x_sample in enumerate(x_samples_ddim):
                p.batch_index = i

                x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
                x_sample = x_sample.astype(np.uint8)

                if p.restore_faces:
                    if save_samples and opts.save_images_before_face_restoration:
                        images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-face-restoration")

                    devices.torch_gc()

                    x_sample = modules.face_restoration.restore_faces(x_sample)
                    devices.torch_gc()

                image = Image.fromarray(x_sample)

                if p.scripts is not None:
                    pp = scripts.PostprocessImageArgs(image)
                    p.scripts.postprocess_image(p, pp)
                    image = pp.image
                if p.color_corrections is not None and i < len(p.color_corrections):
                    if save_samples and opts.save_images_before_color_correction:
                        image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
                        images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
                    image = apply_color_correction(p.color_corrections[i], image)

                image = apply_overlay(image, p.paste_to, i, p.overlay_images)

                if save_samples:
                    images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)

                text = infotext(i)
                infotexts.append(text)
                if opts.enable_pnginfo:
                    image.info["parameters"] = text
                output_images.append(image)
                if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay:
                    if opts.return_mask or opts.save_mask:
                        image_mask = p.mask_for_overlay.convert('RGB')
                        if save_samples and opts.save_mask:
                            images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
                        if opts.return_mask:
                            output_images.append(image_mask)

                    if opts.return_mask_composite or opts.save_mask_composite:
                        image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
                        if save_samples and opts.save_mask_composite:
                            images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
                        if opts.return_mask_composite:
                            output_images.append(image_mask_composite)

            del x_samples_ddim

            devices.torch_gc()

        if not infotexts:
            infotexts.append(Processed(p, []).infotext(p, 0))

        p.color_corrections = None

        index_of_first_image = 0
        unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
        if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
            grid = images.image_grid(output_images, p.batch_size)

            if opts.return_grid:
                text = infotext(use_main_prompt=True)
                infotexts.insert(0, text)
                if opts.enable_pnginfo:
                    grid.info["parameters"] = text
                output_images.insert(0, grid)
                index_of_first_image = 1
            if opts.grid_save:
                images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(use_main_prompt=True), short_filename=not opts.grid_extended_filename, p=p, grid=True)

    if not p.disable_extra_networks and p.extra_network_data:
        extra_networks.deactivate(p, p.extra_network_data)

    devices.torch_gc()

    res = Processed(
        p,
        images_list=output_images,
        seed=p.all_seeds[0],
        info=infotexts[0],
        subseed=p.all_subseeds[0],
        index_of_first_image=index_of_first_image,
        infotexts=infotexts,
    )

    if p.scripts is not None:
        p.scripts.postprocess(p, res)

    return res


def old_hires_fix_first_pass_dimensions(width, height):
    """old algorithm for auto-calculating first pass size"""

    desired_pixel_count = 512 * 512
    actual_pixel_count = width * height
    scale = math.sqrt(desired_pixel_count / actual_pixel_count)
    width = math.ceil(scale * width / 64) * 64
    height = math.ceil(scale * height / 64) * 64

    return width, height


@dataclass(repr=False)
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
    enable_hr: bool = False
    denoising_strength: float = 0.75
    firstphase_width: int = 0
    firstphase_height: int = 0
    hr_scale: float = 2.0
    hr_upscaler: str = None
    hr_second_pass_steps: int = 0
    hr_resize_x: int = 0
    hr_resize_y: int = 0
    hr_checkpoint_name: str = None
    hr_sampler_name: str = None
    hr_prompt: str = ''
    hr_negative_prompt: str = ''

    cached_hr_uc = [None, None]
    cached_hr_c = [None, None]

    hr_checkpoint_info: dict = field(default=None, init=False)
    hr_upscale_to_x: int = field(default=0, init=False)
    hr_upscale_to_y: int = field(default=0, init=False)
    truncate_x: int = field(default=0, init=False)
    truncate_y: int = field(default=0, init=False)
    applied_old_hires_behavior_to: tuple = field(default=None, init=False)
    latent_scale_mode: dict = field(default=None, init=False)
    hr_c: tuple | None = field(default=None, init=False)
    hr_uc: tuple | None = field(default=None, init=False)
    all_hr_prompts: list = field(default=None, init=False)
    all_hr_negative_prompts: list = field(default=None, init=False)
    hr_prompts: list = field(default=None, init=False)
    hr_negative_prompts: list = field(default=None, init=False)
    hr_extra_network_data: list = field(default=None, init=False)

    def __post_init__(self):
        super().__post_init__()

        if self.firstphase_width != 0 or self.firstphase_height != 0:
            self.hr_upscale_to_x = self.width
            self.hr_upscale_to_y = self.height
            self.width = self.firstphase_width
            self.height = self.firstphase_height

        self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc
        self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c

    def calculate_target_resolution(self):
        if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
            self.hr_resize_x = self.width
            self.hr_resize_y = self.height
            self.hr_upscale_to_x = self.width
            self.hr_upscale_to_y = self.height

            self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
            self.applied_old_hires_behavior_to = (self.width, self.height)

        if self.hr_resize_x == 0 and self.hr_resize_y == 0:
            self.extra_generation_params["Hires upscale"] = self.hr_scale
            self.hr_upscale_to_x = int(self.width * self.hr_scale)
            self.hr_upscale_to_y = int(self.height * self.hr_scale)
        else:
            self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"

            if self.hr_resize_y == 0:
                self.hr_upscale_to_x = self.hr_resize_x
                self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
            elif self.hr_resize_x == 0:
                self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
                self.hr_upscale_to_y = self.hr_resize_y
            else:
                target_w = self.hr_resize_x
                target_h = self.hr_resize_y
                src_ratio = self.width / self.height
                dst_ratio = self.hr_resize_x / self.hr_resize_y

                if src_ratio < dst_ratio:
                    self.hr_upscale_to_x = self.hr_resize_x
                    self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
                else:
                    self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
                    self.hr_upscale_to_y = self.hr_resize_y

                self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
                self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f

    def init(self, all_prompts, all_seeds, all_subseeds):
        if self.enable_hr:
            if self.hr_checkpoint_name:
                self.hr_checkpoint_info = sd_models.get_closet_checkpoint_match(self.hr_checkpoint_name)

                if self.hr_checkpoint_info is None:
                    raise Exception(f'Could not find checkpoint with name {self.hr_checkpoint_name}')

                self.extra_generation_params["Hires checkpoint"] = self.hr_checkpoint_info.short_title

            if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
                self.extra_generation_params["Hires sampler"] = self.hr_sampler_name

            if tuple(self.hr_prompt) != tuple(self.prompt):
                self.extra_generation_params["Hires prompt"] = self.hr_prompt

            if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
                self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt

            self.latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
            if self.enable_hr and self.latent_scale_mode is None:
                if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
                    raise Exception(f"could not find upscaler named {self.hr_upscaler}")

            self.calculate_target_resolution()

            if not state.processing_has_refined_job_count:
                if state.job_count == -1:
                    state.job_count = self.n_iter

                shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count)
                state.job_count = state.job_count * 2
                state.processing_has_refined_job_count = True

            if self.hr_second_pass_steps:
                self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps

            if self.hr_upscaler is not None:
                self.extra_generation_params["Hires upscaler"] = self.hr_upscaler

    def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
        self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)

        x = self.rng.next()
        samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
        del x

        if not self.enable_hr:
            return samples
        devices.torch_gc()

        if self.latent_scale_mode is None:
            decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32)
        else:
            decoded_samples = None

        with sd_models.SkipWritingToConfig():
            sd_models.reload_model_weights(info=self.hr_checkpoint_info)

        return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts)

    def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts):
        if shared.state.interrupted:
            return samples

        self.is_hr_pass = True
        target_width = self.hr_upscale_to_x
        target_height = self.hr_upscale_to_y

        def save_intermediate(image, index):
            """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""

            if not self.save_samples() or not opts.save_images_before_highres_fix:
                return

            if not isinstance(image, Image.Image):
                image = sd_samplers.sample_to_image(image, index, approximation=0)

            info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
            images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, p=self, suffix="-before-highres-fix")

        img2img_sampler_name = self.hr_sampler_name or self.sampler_name

        self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)

        if self.latent_scale_mode is not None:
            for i in range(samples.shape[0]):
                save_intermediate(samples, i)

            samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=self.latent_scale_mode["mode"], antialias=self.latent_scale_mode["antialias"])

            # Avoid making the inpainting conditioning unless necessary as
            # this does need some extra compute to decode / encode the image again.
            if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
                image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
            else:
                image_conditioning = self.txt2img_image_conditioning(samples)
        else:
            lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)

            batch_images = []
            for i, x_sample in enumerate(lowres_samples):
                x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
                x_sample = x_sample.astype(np.uint8)
                image = Image.fromarray(x_sample)

                save_intermediate(image, i)

                image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
                image = np.array(image).astype(np.float32) / 255.0
                image = np.moveaxis(image, 2, 0)
                batch_images.append(image)

            decoded_samples = torch.from_numpy(np.array(batch_images))
            decoded_samples = decoded_samples.to(shared.device, dtype=devices.dtype_vae)

            if opts.sd_vae_encode_method != 'Full':
                self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method
            samples = images_tensor_to_samples(decoded_samples, approximation_indexes.get(opts.sd_vae_encode_method))

            image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)

        shared.state.nextjob()

        samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]

        self.rng = rng.ImageRNG(samples.shape[1:], self.seeds, subseeds=self.subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w)
        noise = self.rng.next()

        # GC now before running the next img2img to prevent running out of memory
        devices.torch_gc()

        if not self.disable_extra_networks:
            with devices.autocast():
                extra_networks.activate(self, self.hr_extra_network_data)

        with devices.autocast():
            self.calculate_hr_conds()

        sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))

        if self.scripts is not None:
            self.scripts.before_hr(self)

        samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)

        sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())

        self.sampler = None
        devices.torch_gc()

        decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)

        self.is_hr_pass = False
        return decoded_samples

    def close(self):
        super().close()
        self.hr_c = None
        self.hr_uc = None
        if not opts.persistent_cond_cache:
            StableDiffusionProcessingTxt2Img.cached_hr_uc = [None, None]
            StableDiffusionProcessingTxt2Img.cached_hr_c = [None, None]

    def setup_prompts(self):
        super().setup_prompts()

        if not self.enable_hr:
            return

        if self.hr_prompt == '':
            self.hr_prompt = self.prompt

        if self.hr_negative_prompt == '':
            self.hr_negative_prompt = self.negative_prompt

        if isinstance(self.hr_prompt, list):
            self.all_hr_prompts = self.hr_prompt
        else:
            self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt]

        if isinstance(self.hr_negative_prompt, list):
            self.all_hr_negative_prompts = self.hr_negative_prompt
        else:
            self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt]

        self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
        self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]

    def calculate_hr_conds(self):
        if self.hr_c is not None:
            return

        hr_prompts = prompt_parser.SdConditioning(self.hr_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y)
        hr_negative_prompts = prompt_parser.SdConditioning(self.hr_negative_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y, is_negative_prompt=True)

        sampler_config = sd_samplers.find_sampler_config(self.hr_sampler_name or self.sampler_name)
        steps = self.hr_second_pass_steps or self.steps
        total_steps = sampler_config.total_steps(steps) if sampler_config else steps

        self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, hr_negative_prompts, self.firstpass_steps, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data, total_steps)
        self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, hr_prompts, self.firstpass_steps, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data, total_steps)

    def setup_conds(self):
        if self.is_hr_pass:
            # if we are in hr pass right now, the call is being made from the refiner, and we don't need to setup firstpass cons or switch model
            self.hr_c = None
            self.calculate_hr_conds()
            return

        super().setup_conds()

        self.hr_uc = None
        self.hr_c = None

        if self.enable_hr and self.hr_checkpoint_info is None:
            if shared.opts.hires_fix_use_firstpass_conds:
                self.calculate_hr_conds()

            elif lowvram.is_enabled(shared.sd_model) and shared.sd_model.sd_checkpoint_info == sd_models.select_checkpoint():  # if in lowvram mode, we need to calculate conds right away, before the cond NN is unloaded
                with devices.autocast():
                    extra_networks.activate(self, self.hr_extra_network_data)

                self.calculate_hr_conds()

                with devices.autocast():
                    extra_networks.activate(self, self.extra_network_data)

    def get_conds(self):
        if self.is_hr_pass:
            return self.hr_c, self.hr_uc

        return super().get_conds()

    def parse_extra_network_prompts(self):
        res = super().parse_extra_network_prompts()

        if self.enable_hr:
            self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
            self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]

            self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)

        return res


@dataclass(repr=False)
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
    init_images: list = None
    resize_mode: int = 0
    denoising_strength: float = 0.75
    image_cfg_scale: float = None
    mask: Any = None
    mask_blur_x: int = 4
    mask_blur_y: int = 4
    mask_blur: int = None
    inpainting_fill: int = 0
    inpaint_full_res: bool = True
    inpaint_full_res_padding: int = 0
    inpainting_mask_invert: int = 0
    initial_noise_multiplier: float = None
    latent_mask: Image = None

    image_mask: Any = field(default=None, init=False)

    nmask: torch.Tensor = field(default=None, init=False)
    image_conditioning: torch.Tensor = field(default=None, init=False)
    init_img_hash: str = field(default=None, init=False)
    mask_for_overlay: Image = field(default=None, init=False)
    init_latent: torch.Tensor = field(default=None, init=False)

    def __post_init__(self):
        super().__post_init__()

        self.image_mask = self.mask
        self.mask = None
        self.initial_noise_multiplier = opts.initial_noise_multiplier if self.initial_noise_multiplier is None else self.initial_noise_multiplier

    @property
    def mask_blur(self):
        if self.mask_blur_x == self.mask_blur_y:
            return self.mask_blur_x
        return None

    @mask_blur.setter
    def mask_blur(self, value):
        if isinstance(value, int):
            self.mask_blur_x = value
            self.mask_blur_y = value

    def init(self, all_prompts, all_seeds, all_subseeds):
        self.image_cfg_scale: float = self.image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None

        self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
        crop_region = None

        image_mask = self.image_mask

        if image_mask is not None:
            # image_mask is passed in as RGBA by Gradio to support alpha masks,
            # but we still want to support binary masks.
            image_mask = create_binary_mask(image_mask)

            if self.inpainting_mask_invert:
                image_mask = ImageOps.invert(image_mask)

            if self.mask_blur_x > 0:
                np_mask = np.array(image_mask)
                kernel_size = 2 * int(2.5 * self.mask_blur_x + 0.5) + 1
                np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x)
                image_mask = Image.fromarray(np_mask)

            if self.mask_blur_y > 0:
                np_mask = np.array(image_mask)
                kernel_size = 2 * int(2.5 * self.mask_blur_y + 0.5) + 1
                np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
                image_mask = Image.fromarray(np_mask)

            if self.inpaint_full_res:
                self.mask_for_overlay = image_mask
                mask = image_mask.convert('L')
                crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
                crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
                x1, y1, x2, y2 = crop_region

                mask = mask.crop(crop_region)
                image_mask = images.resize_image(2, mask, self.width, self.height)
                self.paste_to = (x1, y1, x2-x1, y2-y1)
            else:
                image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
                np_mask = np.array(image_mask)
                np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
                self.mask_for_overlay = Image.fromarray(np_mask)

            self.overlay_images = []

        latent_mask = self.latent_mask if self.latent_mask is not None else image_mask

        add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
        if add_color_corrections:
            self.color_corrections = []
        imgs = []
        for img in self.init_images:

            # Save init image
            if opts.save_init_img:
                self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
                images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)

            image = images.flatten(img, opts.img2img_background_color)

            if crop_region is None and self.resize_mode != 3:
                image = images.resize_image(self.resize_mode, image, self.width, self.height)

            if image_mask is not None:
                image_masked = Image.new('RGBa', (image.width, image.height))
                image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))

                self.overlay_images.append(image_masked.convert('RGBA'))

            # crop_region is not None if we are doing inpaint full res
            if crop_region is not None:
                image = image.crop(crop_region)
                image = images.resize_image(2, image, self.width, self.height)

            if image_mask is not None:
                if self.inpainting_fill != 1:
                    image = masking.fill(image, latent_mask)

            if add_color_corrections:
                self.color_corrections.append(setup_color_correction(image))

            image = np.array(image).astype(np.float32) / 255.0
            image = np.moveaxis(image, 2, 0)

            imgs.append(image)

        if len(imgs) == 1:
            batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
            if self.overlay_images is not None:
                self.overlay_images = self.overlay_images * self.batch_size

            if self.color_corrections is not None and len(self.color_corrections) == 1:
                self.color_corrections = self.color_corrections * self.batch_size

        elif len(imgs) <= self.batch_size:
            self.batch_size = len(imgs)
            batch_images = np.array(imgs)
        else:
            raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")

        image = torch.from_numpy(batch_images)
        image = image.to(shared.device, dtype=devices.dtype_vae)

        if opts.sd_vae_encode_method != 'Full':
            self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method

        self.init_latent = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
        devices.torch_gc()

        if self.resize_mode == 3:
            self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")

        if image_mask is not None:
            init_mask = latent_mask
            latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
            latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
            latmask = latmask[0]
            latmask = np.around(latmask)
            latmask = np.tile(latmask[None], (4, 1, 1))

            self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
            self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)

            # this needs to be fixed to be done in sample() using actual seeds for batches
            if self.inpainting_fill == 2:
                self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
            elif self.inpainting_fill == 3:
                self.init_latent = self.init_latent * self.mask

        self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask)

    def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
        x = self.rng.next()

        if self.initial_noise_multiplier != 1.0:
            self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
            x *= self.initial_noise_multiplier

        samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)

        if self.mask is not None:
            samples = samples * self.nmask + self.init_latent * self.mask

        del x
        devices.torch_gc()

        return samples

    def get_token_merging_ratio(self, for_hr=False):
        return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio