|
''' |
|
Thanks SpenserCai for the original version of the roop api script |
|
----------------------------------- |
|
--- ReActor External API v1.0.1 --- |
|
----------------------------------- |
|
''' |
|
import os, glob |
|
from datetime import datetime, date |
|
from fastapi import FastAPI, Body |
|
|
|
|
|
from modules import scripts, shared |
|
from modules.api import api |
|
|
|
import gradio as gr |
|
|
|
from scripts.reactor_swapper import EnhancementOptions, swap_face |
|
from scripts.reactor_logger import logger |
|
|
|
|
|
def default_file_path(): |
|
time = datetime.now() |
|
today = date.today() |
|
current_date = today.strftime('%Y-%m-%d') |
|
current_time = time.strftime('%H-%M-%S') |
|
output_file = 'output_'+current_date+'_'+current_time+'.png' |
|
return os.path.join(os.path.abspath("outputs/api"), output_file) |
|
|
|
def get_face_restorer(name): |
|
for restorer in shared.face_restorers: |
|
if restorer.name() == name: |
|
return restorer |
|
return None |
|
|
|
def get_upscaler(name): |
|
for upscaler in shared.sd_upscalers: |
|
if upscaler.name == name: |
|
return upscaler |
|
return None |
|
|
|
def get_models(): |
|
models_path = os.path.join(scripts.basedir(), "models/insightface/*") |
|
models = glob.glob(models_path) |
|
models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")] |
|
return models |
|
|
|
def get_full_model(model_name): |
|
models = get_models() |
|
for model in models: |
|
model_path = os.path.split(model) |
|
if model_path[1] == model_name: |
|
return model |
|
return None |
|
|
|
def reactor_api(_: gr.Blocks, app: FastAPI): |
|
@app.post("/reactor/image") |
|
async def reactor_image( |
|
source_image: str = Body("",title="Source Face Image"), |
|
target_image: str = Body("",title="Target Image"), |
|
source_faces_index: list[int] = Body([0],title="Comma separated face number(s) from swap-source image"), |
|
face_index: list[int] = Body([0],title="Comma separated face number(s) for target image (result)"), |
|
upscaler: str = Body("None",title="Upscaler"), |
|
scale: float = Body(1,title="Scale by"), |
|
upscale_visibility: float = Body(1,title="Upscaler visibility (if scale = 1)"), |
|
face_restorer: str = Body("None",title="Restore Face: 0 - None; 1 - CodeFormer; 2 - GFPGA"), |
|
restorer_visibility: float = Body(1,title="Restore visibility value"), |
|
codeformer_weight: float = Body(0.5,title="CodeFormer Weight"), |
|
restore_first: int = Body(1,title="Restore face -> Then upscale, 1 - True, 0 - False"), |
|
model: str = Body("inswapper_128.onnx",title="Model"), |
|
gender_source: int = Body(0,title="Gender Detection (Source) (0 - No, 1 - Female Only, 2 - Male Only)"), |
|
gender_target: int = Body(0,title="Gender Detection (Target) (0 - No, 1 - Female Only, 2 - Male Only)"), |
|
save_to_file: int = Body(0,title="Save Result to file, 0 - No, 1 - Yes"), |
|
result_file_path: str = Body("",title="(if 'save_to_file = 1') Result file path"), |
|
device: str = Body("CPU",title="CPU or CUDA (if you have it)"), |
|
mask_face: int = Body(0,title="Face Mask Correction, 1 - True, 0 - False"), |
|
select_source: int = Body(0,title="Select Source, 0 - Image, 1 - Face Model, 2 - Source Folder"), |
|
face_model: str = Body("None",title="Filename of the face model (from 'models/reactor/faces'), e.g. elena.safetensors"), |
|
source_folder: str = Body("",title="The path to the folder containing source faces images") |
|
): |
|
s_image = api.decode_base64_to_image(source_image) |
|
t_image = api.decode_base64_to_image(target_image) |
|
sf_index = source_faces_index |
|
f_index = face_index |
|
gender_s = gender_source |
|
gender_t = gender_target |
|
restore_first_bool = True if restore_first == 1 else False |
|
mask_face = True if mask_face == 1 else False |
|
up_options = EnhancementOptions(do_restore_first=restore_first_bool, scale=scale, upscaler=get_upscaler(upscaler), upscale_visibility=upscale_visibility,face_restorer=get_face_restorer(face_restorer),restorer_visibility=restorer_visibility,codeformer_weight=codeformer_weight) |
|
use_model = get_full_model(model) |
|
if use_model is None: |
|
Exception("Model not found") |
|
result = swap_face(s_image, t_image, use_model, sf_index, f_index, up_options, gender_s, gender_t, True, True, device, mask_face, select_source, face_model, source_folder, None) |
|
if save_to_file == 1: |
|
if result_file_path == "": |
|
result_file_path = default_file_path() |
|
try: |
|
result[0].save(result_file_path, format='PNG') |
|
logger.status("Result has been saved to: %s", result_file_path) |
|
except Exception as e: |
|
logger.error("Error while saving result: %s",e) |
|
return {"image": api.encode_pil_to_base64(result[0])} |
|
|
|
@app.get("/reactor/models") |
|
async def reactor_models(): |
|
model_names = [os.path.split(model)[1] for model in get_models()] |
|
return {"models": model_names} |
|
|
|
@app.get("/reactor/upscalers") |
|
async def reactor_upscalers(): |
|
names = [upscaler.name for upscaler in shared.sd_upscalers] |
|
return {"upscalers": names} |
|
|
|
try: |
|
import modules.script_callbacks as script_callbacks |
|
|
|
script_callbacks.on_app_started(reactor_api) |
|
except: |
|
pass |
|
|