PennyJX's picture
Upload 52 files
983d4ef verified
raw
history blame
7.22 kB
import os, glob
from collections import Counter
from PIL import Image
from math import isqrt, ceil
from typing import List
import logging
import hashlib
import torch
from safetensors.torch import save_file, safe_open
from insightface.app.common import Face
from modules.images import FilenameGenerator, get_next_sequence_number
from modules import shared, script_callbacks
from scripts.reactor_globals import DEVICE, BASE_PATH, FACE_MODELS_PATH, IS_SDNEXT
try:
from modules.paths_internal import models_path
except:
try:
from modules.paths import models_path
except:
model_path = os.path.abspath("models")
MODELS_PATH = None
def set_Device(value):
global DEVICE
DEVICE = value
with open(os.path.join(BASE_PATH, "last_device.txt"), "w") as txt:
txt.write(DEVICE)
def get_Device():
global DEVICE
return DEVICE
def set_SDNEXT():
global IS_SDNEXT
IS_SDNEXT = True
def get_SDNEXT():
global IS_SDNEXT
return IS_SDNEXT
def make_grid(image_list: List):
# Count the occurrences of each image size in the image_list
size_counter = Counter(image.size for image in image_list)
# Get the most common image size (size with the highest count)
common_size = size_counter.most_common(1)[0][0]
# Filter the image_list to include only images with the common size
image_list = [image for image in image_list if image.size == common_size]
# Get the dimensions (width and height) of the common size
size = common_size
# If there are more than one image in the image_list
if len(image_list) > 1:
num_images = len(image_list)
# Calculate the number of rows and columns for the grid
rows = isqrt(num_images)
cols = ceil(num_images / rows)
# Calculate the size of the square image
square_size = (cols * size[0], rows * size[1])
# Create a new RGB image with the square size
square_image = Image.new("RGB", square_size)
# Paste each image onto the square image at the appropriate position
for i, image in enumerate(image_list):
row = i // cols
col = i % cols
square_image.paste(image, (col * size[0], row * size[1]))
# Return the resulting square image
return square_image
# Return None if there are no images or only one image in the image_list
return None
def get_image_path(image, path, basename, seed=None, prompt=None, extension='png', p=None, suffix=""):
namegen = FilenameGenerator(p, seed, prompt, image)
save_to_dirs = shared.opts.save_to_dirs
if save_to_dirs:
dirname = namegen.apply(shared.opts.directories_filename_pattern or "[prompt_words]").lstrip(' ').rstrip('\\ /')
path = os.path.join(path, dirname)
os.makedirs(path, exist_ok=True)
if seed is None:
file_decoration = ""
elif shared.opts.save_to_dirs:
file_decoration = shared.opts.samples_filename_pattern or "[seed]"
else:
file_decoration = shared.opts.samples_filename_pattern or "[seed]-[prompt_spaces]"
file_decoration = namegen.apply(file_decoration) + suffix
add_number = shared.opts.save_images_add_number or file_decoration == ''
if file_decoration != "" and add_number:
file_decoration = f"-{file_decoration}"
if add_number:
basecount = get_next_sequence_number(path, basename)
fullfn = None
for i in range(500):
fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}"
fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}")
if not os.path.exists(fullfn):
break
else:
fullfn = os.path.join(path, f"{file_decoration}.{extension}")
pnginfo = {}
params = script_callbacks.ImageSaveParams(image, p, fullfn, pnginfo)
# script_callbacks.before_image_saved_callback(params)
fullfn = params.filename
fullfn_without_extension, extension = os.path.splitext(params.filename)
if hasattr(os, 'statvfs'):
max_name_len = os.statvfs(path).f_namemax
fullfn_without_extension = fullfn_without_extension[:max_name_len - max(4, len(extension))]
params.filename = fullfn_without_extension + extension
fullfn = params.filename
return fullfn
def addLoggingLevel(levelName, levelNum, methodName=None):
if not methodName:
methodName = levelName.lower()
def logForLevel(self, message, *args, **kwargs):
if self.isEnabledFor(levelNum):
self._log(levelNum, message, args, **kwargs)
def logToRoot(message, *args, **kwargs):
logging.log(levelNum, message, *args, **kwargs)
logging.addLevelName(levelNum, levelName)
setattr(logging, levelName, levelNum)
setattr(logging.getLoggerClass(), methodName, logForLevel)
setattr(logging, methodName, logToRoot)
def get_image_md5hash(image: Image.Image):
md5hash = hashlib.md5(image.tobytes())
return md5hash.hexdigest()
def save_face_model(face: Face, filename: str) -> None:
try:
tensors = {
"bbox": torch.tensor(face["bbox"]),
"kps": torch.tensor(face["kps"]),
"det_score": torch.tensor(face["det_score"]),
"landmark_3d_68": torch.tensor(face["landmark_3d_68"]),
"pose": torch.tensor(face["pose"]),
"landmark_2d_106": torch.tensor(face["landmark_2d_106"]),
"embedding": torch.tensor(face["embedding"]),
"gender": torch.tensor(face["gender"]),
"age": torch.tensor(face["age"]),
}
save_file(tensors, filename)
# print(f"Face model has been saved to '{filename}'")
except Exception as e:
print(f"Error: {e}")
def get_models():
global MODELS_PATH
models_path_init = os.path.join(models_path, "insightface/*")
models = glob.glob(models_path_init)
models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")]
models_names = []
for model in models:
model_path = os.path.split(model)
if MODELS_PATH is None:
MODELS_PATH = model_path[0]
model_name = model_path[1]
models_names.append(model_name)
return models_names
def load_face_model(filename: str):
face = {}
model_path = os.path.join(FACE_MODELS_PATH, filename)
with safe_open(model_path, framework="pt") as f:
for k in f.keys():
face[k] = f.get_tensor(k).numpy()
return Face(face)
def get_facemodels():
models_path = os.path.join(FACE_MODELS_PATH, "*")
models = glob.glob(models_path)
models = [x for x in models if x.endswith(".safetensors")]
return models
def get_model_names(get_models):
models = get_models()
names = ["None"]
for x in models:
names.append(os.path.basename(x))
return names
def get_images_from_folder(path: str):
images_path = os.path.join(path, "*")
images = glob.glob(images_path)
return [Image.open(x) for x in images if x.endswith(('jpg', 'png', 'jpeg', 'webp', 'bmp'))]
def get_images_from_list(imgs: List):
return [Image.open(os.path.abspath(x.name)) for x in imgs]