|
from functools import wraps |
|
import html |
|
import time |
|
|
|
from modules import shared, progress, errors, devices, fifo_lock |
|
|
|
queue_lock = fifo_lock.FIFOLock() |
|
|
|
|
|
def wrap_queued_call(func): |
|
def f(*args, **kwargs): |
|
with queue_lock: |
|
res = func(*args, **kwargs) |
|
|
|
return res |
|
|
|
return f |
|
|
|
|
|
def wrap_gradio_gpu_call(func, extra_outputs=None): |
|
@wraps(func) |
|
def f(*args, **kwargs): |
|
|
|
|
|
if args and type(args[0]) == str and args[0].startswith("task(") and args[0].endswith(")"): |
|
id_task = args[0] |
|
progress.add_task_to_queue(id_task) |
|
else: |
|
id_task = None |
|
|
|
with queue_lock: |
|
shared.state.begin(job=id_task) |
|
progress.start_task(id_task) |
|
|
|
try: |
|
res = func(*args, **kwargs) |
|
progress.record_results(id_task, res) |
|
finally: |
|
progress.finish_task(id_task) |
|
|
|
shared.state.end() |
|
|
|
return res |
|
|
|
return wrap_gradio_call(f, extra_outputs=extra_outputs, add_stats=True) |
|
|
|
|
|
def wrap_gradio_call(func, extra_outputs=None, add_stats=False): |
|
@wraps(func) |
|
def f(*args, extra_outputs_array=extra_outputs, **kwargs): |
|
run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats |
|
if run_memmon: |
|
shared.mem_mon.monitor() |
|
t = time.perf_counter() |
|
|
|
try: |
|
res = list(func(*args, **kwargs)) |
|
except Exception as e: |
|
|
|
|
|
max_debug_str_len = 131072 |
|
message = "Error completing request" |
|
arg_str = f"Arguments: {args} {kwargs}"[:max_debug_str_len] |
|
if len(arg_str) > max_debug_str_len: |
|
arg_str += f" (Argument list truncated at {max_debug_str_len}/{len(arg_str)} characters)" |
|
errors.report(f"{message}\n{arg_str}", exc_info=True) |
|
|
|
shared.state.job = "" |
|
shared.state.job_count = 0 |
|
|
|
if extra_outputs_array is None: |
|
extra_outputs_array = [None, ''] |
|
|
|
error_message = f'{type(e).__name__}: {e}' |
|
res = extra_outputs_array + [f"<div class='error'>{html.escape(error_message)}</div>"] |
|
|
|
devices.torch_gc() |
|
|
|
shared.state.skipped = False |
|
shared.state.interrupted = False |
|
shared.state.job_count = 0 |
|
|
|
if not add_stats: |
|
return tuple(res) |
|
|
|
elapsed = time.perf_counter() - t |
|
elapsed_m = int(elapsed // 60) |
|
elapsed_s = elapsed % 60 |
|
elapsed_text = f"{elapsed_s:.1f} sec." |
|
if elapsed_m > 0: |
|
elapsed_text = f"{elapsed_m} min. "+elapsed_text |
|
|
|
if run_memmon: |
|
mem_stats = {k: -(v//-(1024*1024)) for k, v in shared.mem_mon.stop().items()} |
|
active_peak = mem_stats['active_peak'] |
|
reserved_peak = mem_stats['reserved_peak'] |
|
sys_peak = mem_stats['system_peak'] |
|
sys_total = mem_stats['total'] |
|
sys_pct = sys_peak/max(sys_total, 1) * 100 |
|
|
|
toltip_a = "Active: peak amount of video memory used during generation (excluding cached data)" |
|
toltip_r = "Reserved: total amout of video memory allocated by the Torch library " |
|
toltip_sys = "System: peak amout of video memory allocated by all running programs, out of total capacity" |
|
|
|
text_a = f"<abbr title='{toltip_a}'>A</abbr>: <span class='measurement'>{active_peak/1024:.2f} GB</span>" |
|
text_r = f"<abbr title='{toltip_r}'>R</abbr>: <span class='measurement'>{reserved_peak/1024:.2f} GB</span>" |
|
text_sys = f"<abbr title='{toltip_sys}'>Sys</abbr>: <span class='measurement'>{sys_peak/1024:.1f}/{sys_total/1024:g} GB</span> ({sys_pct:.1f}%)" |
|
|
|
vram_html = f"<p class='vram'>{text_a}, <wbr>{text_r}, <wbr>{text_sys}</p>" |
|
else: |
|
vram_html = '' |
|
|
|
|
|
res[-1] += f"<div class='performance'><p class='time'>Time taken: <wbr><span class='measurement'>{elapsed_text}</span></p>{vram_html}</div>" |
|
|
|
return tuple(res) |
|
|
|
return f |
|
|