|
import logging |
|
|
|
import torch |
|
from torch import Tensor |
|
import platform |
|
from modules.sd_hijack_utils import CondFunc |
|
from packaging import version |
|
from modules import shared |
|
|
|
log = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_for_mps() -> bool: |
|
if version.parse(torch.__version__) <= version.parse("2.0.1"): |
|
if not getattr(torch, 'has_mps', False): |
|
return False |
|
try: |
|
torch.zeros(1).to(torch.device("mps")) |
|
return True |
|
except Exception: |
|
return False |
|
else: |
|
return torch.backends.mps.is_available() and torch.backends.mps.is_built() |
|
|
|
|
|
has_mps = check_for_mps() |
|
|
|
|
|
def torch_mps_gc() -> None: |
|
try: |
|
if shared.state.current_latent is not None: |
|
log.debug("`current_latent` is set, skipping MPS garbage collection") |
|
return |
|
from torch.mps import empty_cache |
|
empty_cache() |
|
except Exception: |
|
log.warning("MPS garbage collection failed", exc_info=True) |
|
|
|
|
|
|
|
def cumsum_fix(input, cumsum_func, *args, **kwargs): |
|
if input.device.type == 'mps': |
|
output_dtype = kwargs.get('dtype', input.dtype) |
|
if output_dtype == torch.int64: |
|
return cumsum_func(input.cpu(), *args, **kwargs).to(input.device) |
|
elif output_dtype == torch.bool or cumsum_needs_int_fix and (output_dtype == torch.int8 or output_dtype == torch.int16): |
|
return cumsum_func(input.to(torch.int32), *args, **kwargs).to(torch.int64) |
|
return cumsum_func(input, *args, **kwargs) |
|
|
|
|
|
|
|
def interpolate_with_fp32_fallback(orig_func, *args, **kwargs) -> Tensor: |
|
try: |
|
return orig_func(*args, **kwargs) |
|
except RuntimeError as e: |
|
if "not implemented for" in str(e) and "Half" in str(e): |
|
input_tensor = args[0] |
|
return orig_func(input_tensor.to(torch.float32), *args[1:], **kwargs).to(input_tensor.dtype) |
|
else: |
|
print(f"An unexpected RuntimeError occurred: {str(e)}") |
|
|
|
if has_mps: |
|
if platform.mac_ver()[0].startswith("13.2."): |
|
|
|
CondFunc('torch.nn.functional.linear', lambda _, input, weight, bias: (torch.matmul(input, weight.t()) + bias) if bias is not None else torch.matmul(input, weight.t()), lambda _, input, weight, bias: input.numel() > 10485760) |
|
|
|
if version.parse(torch.__version__) < version.parse("1.13"): |
|
|
|
|
|
|
|
CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs), |
|
lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')) |
|
|
|
CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs), |
|
lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps') |
|
|
|
CondFunc('torch.Tensor.numpy', lambda orig_func, self, *args, **kwargs: orig_func(self.detach(), *args, **kwargs), lambda _, self, *args, **kwargs: self.requires_grad) |
|
elif version.parse(torch.__version__) > version.parse("1.13.1"): |
|
cumsum_needs_int_fix = not torch.Tensor([1,2]).to(torch.device("mps")).equal(torch.ShortTensor([1,1]).to(torch.device("mps")).cumsum(0)) |
|
cumsum_fix_func = lambda orig_func, input, *args, **kwargs: cumsum_fix(input, orig_func, *args, **kwargs) |
|
CondFunc('torch.cumsum', cumsum_fix_func, None) |
|
CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None) |
|
CondFunc('torch.narrow', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).clone(), None) |
|
|
|
|
|
CondFunc('torch.nn.functional.layer_norm', lambda orig_func, x, normalized_shape, weight, bias, eps, **kwargs: orig_func(x.float(), normalized_shape, weight.float() if weight is not None else None, bias.float() if bias is not None else bias, eps).to(x.dtype), lambda _, input, *args, **kwargs: len(args) == 4 and input.device.type == 'mps') |
|
|
|
|
|
CondFunc('torch.nn.functional.interpolate', interpolate_with_fp32_fallback, None) |
|
|
|
|
|
if platform.processor() == 'i386': |
|
for funcName in ['torch.argmax', 'torch.Tensor.argmax']: |
|
CondFunc(funcName, lambda _, input, *args, **kwargs: torch.max(input.float() if input.dtype == torch.int64 else input, *args, **kwargs)[1], lambda _, input, *args, **kwargs: input.device.type == 'mps') |
|
|