|
from PIL import Image |
|
import numpy as np |
|
|
|
from modules import scripts_postprocessing, gfpgan_model, ui_components |
|
import gradio as gr |
|
|
|
|
|
class ScriptPostprocessingGfpGan(scripts_postprocessing.ScriptPostprocessing): |
|
name = "GFPGAN" |
|
order = 2000 |
|
|
|
def ui(self): |
|
with ui_components.InputAccordion(False, label="GFPGAN") as enable: |
|
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id="extras_gfpgan_visibility") |
|
|
|
return { |
|
"enable": enable, |
|
"gfpgan_visibility": gfpgan_visibility, |
|
} |
|
|
|
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, gfpgan_visibility): |
|
if gfpgan_visibility == 0 or not enable: |
|
return |
|
|
|
restored_img = gfpgan_model.gfpgan_fix_faces(np.array(pp.image, dtype=np.uint8)) |
|
res = Image.fromarray(restored_img) |
|
|
|
if gfpgan_visibility < 1.0: |
|
res = Image.blend(pp.image, res, gfpgan_visibility) |
|
|
|
pp.image = res |
|
pp.info["GFPGAN visibility"] = round(gfpgan_visibility, 3) |
|
|