|
import os |
|
|
|
import facexlib |
|
import gfpgan |
|
|
|
import modules.face_restoration |
|
from modules import paths, shared, devices, modelloader, errors |
|
|
|
model_dir = "GFPGAN" |
|
user_path = None |
|
model_path = os.path.join(paths.models_path, model_dir) |
|
model_file_path = None |
|
model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth" |
|
have_gfpgan = False |
|
loaded_gfpgan_model = None |
|
|
|
|
|
def gfpgann(): |
|
global loaded_gfpgan_model |
|
global model_path |
|
global model_file_path |
|
if loaded_gfpgan_model is not None: |
|
loaded_gfpgan_model.gfpgan.to(devices.device_gfpgan) |
|
return loaded_gfpgan_model |
|
|
|
if gfpgan_constructor is None: |
|
return None |
|
|
|
models = modelloader.load_models(model_path, model_url, user_path, ext_filter=['.pth']) |
|
|
|
if len(models) == 1 and models[0].startswith("http"): |
|
model_file = models[0] |
|
elif len(models) != 0: |
|
gfp_models = [] |
|
for item in models: |
|
if 'GFPGAN' in os.path.basename(item): |
|
gfp_models.append(item) |
|
latest_file = max(gfp_models, key=os.path.getctime) |
|
model_file = latest_file |
|
else: |
|
print("Unable to load gfpgan model!") |
|
return None |
|
|
|
if hasattr(facexlib.detection.retinaface, 'device'): |
|
facexlib.detection.retinaface.device = devices.device_gfpgan |
|
model_file_path = model_file |
|
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan) |
|
loaded_gfpgan_model = model |
|
|
|
return model |
|
|
|
|
|
def send_model_to(model, device): |
|
model.gfpgan.to(device) |
|
model.face_helper.face_det.to(device) |
|
model.face_helper.face_parse.to(device) |
|
|
|
|
|
def gfpgan_fix_faces(np_image): |
|
model = gfpgann() |
|
if model is None: |
|
return np_image |
|
|
|
send_model_to(model, devices.device_gfpgan) |
|
|
|
np_image_bgr = np_image[:, :, ::-1] |
|
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True) |
|
np_image = gfpgan_output_bgr[:, :, ::-1] |
|
|
|
model.face_helper.clean_all() |
|
|
|
if shared.opts.face_restoration_unload: |
|
send_model_to(model, devices.cpu) |
|
|
|
return np_image |
|
|
|
|
|
gfpgan_constructor = None |
|
|
|
|
|
def setup_model(dirname): |
|
try: |
|
os.makedirs(model_path, exist_ok=True) |
|
from gfpgan import GFPGANer |
|
from facexlib import detection, parsing |
|
global user_path |
|
global have_gfpgan |
|
global gfpgan_constructor |
|
global model_file_path |
|
|
|
facexlib_path = model_path |
|
|
|
if dirname is not None: |
|
facexlib_path = dirname |
|
|
|
load_file_from_url_orig = gfpgan.utils.load_file_from_url |
|
facex_load_file_from_url_orig = facexlib.detection.load_file_from_url |
|
facex_load_file_from_url_orig2 = facexlib.parsing.load_file_from_url |
|
|
|
def my_load_file_from_url(**kwargs): |
|
return load_file_from_url_orig(**dict(kwargs, model_dir=model_file_path)) |
|
|
|
def facex_load_file_from_url(**kwargs): |
|
return facex_load_file_from_url_orig(**dict(kwargs, save_dir=facexlib_path, model_dir=None)) |
|
|
|
def facex_load_file_from_url2(**kwargs): |
|
return facex_load_file_from_url_orig2(**dict(kwargs, save_dir=facexlib_path, model_dir=None)) |
|
|
|
gfpgan.utils.load_file_from_url = my_load_file_from_url |
|
facexlib.detection.load_file_from_url = facex_load_file_from_url |
|
facexlib.parsing.load_file_from_url = facex_load_file_from_url2 |
|
user_path = dirname |
|
have_gfpgan = True |
|
gfpgan_constructor = GFPGANer |
|
|
|
class FaceRestorerGFPGAN(modules.face_restoration.FaceRestoration): |
|
def name(self): |
|
return "GFPGAN" |
|
|
|
def restore(self, np_image): |
|
return gfpgan_fix_faces(np_image) |
|
|
|
shared.face_restorers.append(FaceRestorerGFPGAN()) |
|
except Exception: |
|
errors.report("Error setting up GFPGAN", exc_info=True) |
|
|