PennyJX commited on
Commit
0427087
1 Parent(s): b5f648f

Delete modules/uni_pc/uni_pc.py

Browse files
Files changed (1) hide show
  1. modules/uni_pc/uni_pc.py +0 -863
modules/uni_pc/uni_pc.py DELETED
@@ -1,863 +0,0 @@
1
- import torch
2
- import math
3
- import tqdm
4
-
5
-
6
- class NoiseScheduleVP:
7
- def __init__(
8
- self,
9
- schedule='discrete',
10
- betas=None,
11
- alphas_cumprod=None,
12
- continuous_beta_0=0.1,
13
- continuous_beta_1=20.,
14
- ):
15
- """Create a wrapper class for the forward SDE (VP type).
16
-
17
- ***
18
- Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
19
- We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
20
- ***
21
-
22
- The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
23
- We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
24
- Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
25
-
26
- log_alpha_t = self.marginal_log_mean_coeff(t)
27
- sigma_t = self.marginal_std(t)
28
- lambda_t = self.marginal_lambda(t)
29
-
30
- Moreover, as lambda(t) is an invertible function, we also support its inverse function:
31
-
32
- t = self.inverse_lambda(lambda_t)
33
-
34
- ===============================================================
35
-
36
- We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
37
-
38
- 1. For discrete-time DPMs:
39
-
40
- For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
41
- t_i = (i + 1) / N
42
- e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
43
- We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
44
-
45
- Args:
46
- betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
47
- alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
48
-
49
- Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
50
-
51
- **Important**: Please pay special attention for the args for `alphas_cumprod`:
52
- The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
53
- q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
54
- Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
55
- alpha_{t_n} = \sqrt{\hat{alpha_n}},
56
- and
57
- log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
58
-
59
-
60
- 2. For continuous-time DPMs:
61
-
62
- We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
63
- schedule are the default settings in DDPM and improved-DDPM:
64
-
65
- Args:
66
- beta_min: A `float` number. The smallest beta for the linear schedule.
67
- beta_max: A `float` number. The largest beta for the linear schedule.
68
- cosine_s: A `float` number. The hyperparameter in the cosine schedule.
69
- cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
70
- T: A `float` number. The ending time of the forward process.
71
-
72
- ===============================================================
73
-
74
- Args:
75
- schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
76
- 'linear' or 'cosine' for continuous-time DPMs.
77
- Returns:
78
- A wrapper object of the forward SDE (VP type).
79
-
80
- ===============================================================
81
-
82
- Example:
83
-
84
- # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
85
- >>> ns = NoiseScheduleVP('discrete', betas=betas)
86
-
87
- # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
88
- >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
89
-
90
- # For continuous-time DPMs (VPSDE), linear schedule:
91
- >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
92
-
93
- """
94
-
95
- if schedule not in ['discrete', 'linear', 'cosine']:
96
- raise ValueError(f"Unsupported noise schedule {schedule}. The schedule needs to be 'discrete' or 'linear' or 'cosine'")
97
-
98
- self.schedule = schedule
99
- if schedule == 'discrete':
100
- if betas is not None:
101
- log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
102
- else:
103
- assert alphas_cumprod is not None
104
- log_alphas = 0.5 * torch.log(alphas_cumprod)
105
- self.total_N = len(log_alphas)
106
- self.T = 1.
107
- self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
108
- self.log_alpha_array = log_alphas.reshape((1, -1,))
109
- else:
110
- self.total_N = 1000
111
- self.beta_0 = continuous_beta_0
112
- self.beta_1 = continuous_beta_1
113
- self.cosine_s = 0.008
114
- self.cosine_beta_max = 999.
115
- self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
116
- self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
117
- self.schedule = schedule
118
- if schedule == 'cosine':
119
- # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
120
- # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
121
- self.T = 0.9946
122
- else:
123
- self.T = 1.
124
-
125
- def marginal_log_mean_coeff(self, t):
126
- """
127
- Compute log(alpha_t) of a given continuous-time label t in [0, T].
128
- """
129
- if self.schedule == 'discrete':
130
- return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
131
- elif self.schedule == 'linear':
132
- return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
133
- elif self.schedule == 'cosine':
134
- log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
135
- log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
136
- return log_alpha_t
137
-
138
- def marginal_alpha(self, t):
139
- """
140
- Compute alpha_t of a given continuous-time label t in [0, T].
141
- """
142
- return torch.exp(self.marginal_log_mean_coeff(t))
143
-
144
- def marginal_std(self, t):
145
- """
146
- Compute sigma_t of a given continuous-time label t in [0, T].
147
- """
148
- return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
149
-
150
- def marginal_lambda(self, t):
151
- """
152
- Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
153
- """
154
- log_mean_coeff = self.marginal_log_mean_coeff(t)
155
- log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
156
- return log_mean_coeff - log_std
157
-
158
- def inverse_lambda(self, lamb):
159
- """
160
- Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
161
- """
162
- if self.schedule == 'linear':
163
- tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
164
- Delta = self.beta_0**2 + tmp
165
- return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
166
- elif self.schedule == 'discrete':
167
- log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
168
- t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
169
- return t.reshape((-1,))
170
- else:
171
- log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
172
- t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
173
- t = t_fn(log_alpha)
174
- return t
175
-
176
-
177
- def model_wrapper(
178
- model,
179
- noise_schedule,
180
- model_type="noise",
181
- model_kwargs=None,
182
- guidance_type="uncond",
183
- #condition=None,
184
- #unconditional_condition=None,
185
- guidance_scale=1.,
186
- classifier_fn=None,
187
- classifier_kwargs=None,
188
- ):
189
- """Create a wrapper function for the noise prediction model.
190
-
191
- DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
192
- firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
193
-
194
- We support four types of the diffusion model by setting `model_type`:
195
-
196
- 1. "noise": noise prediction model. (Trained by predicting noise).
197
-
198
- 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
199
-
200
- 3. "v": velocity prediction model. (Trained by predicting the velocity).
201
- The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
202
-
203
- [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
204
- arXiv preprint arXiv:2202.00512 (2022).
205
- [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
206
- arXiv preprint arXiv:2210.02303 (2022).
207
-
208
- 4. "score": marginal score function. (Trained by denoising score matching).
209
- Note that the score function and the noise prediction model follows a simple relationship:
210
- ```
211
- noise(x_t, t) = -sigma_t * score(x_t, t)
212
- ```
213
-
214
- We support three types of guided sampling by DPMs by setting `guidance_type`:
215
- 1. "uncond": unconditional sampling by DPMs.
216
- The input `model` has the following format:
217
- ``
218
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
219
- ``
220
-
221
- 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
222
- The input `model` has the following format:
223
- ``
224
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
225
- ``
226
-
227
- The input `classifier_fn` has the following format:
228
- ``
229
- classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
230
- ``
231
-
232
- [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
233
- in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
234
-
235
- 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
236
- The input `model` has the following format:
237
- ``
238
- model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
239
- ``
240
- And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
241
-
242
- [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
243
- arXiv preprint arXiv:2207.12598 (2022).
244
-
245
-
246
- The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
247
- or continuous-time labels (i.e. epsilon to T).
248
-
249
- We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
250
- ``
251
- def model_fn(x, t_continuous) -> noise:
252
- t_input = get_model_input_time(t_continuous)
253
- return noise_pred(model, x, t_input, **model_kwargs)
254
- ``
255
- where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
256
-
257
- ===============================================================
258
-
259
- Args:
260
- model: A diffusion model with the corresponding format described above.
261
- noise_schedule: A noise schedule object, such as NoiseScheduleVP.
262
- model_type: A `str`. The parameterization type of the diffusion model.
263
- "noise" or "x_start" or "v" or "score".
264
- model_kwargs: A `dict`. A dict for the other inputs of the model function.
265
- guidance_type: A `str`. The type of the guidance for sampling.
266
- "uncond" or "classifier" or "classifier-free".
267
- condition: A pytorch tensor. The condition for the guided sampling.
268
- Only used for "classifier" or "classifier-free" guidance type.
269
- unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
270
- Only used for "classifier-free" guidance type.
271
- guidance_scale: A `float`. The scale for the guided sampling.
272
- classifier_fn: A classifier function. Only used for the classifier guidance.
273
- classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
274
- Returns:
275
- A noise prediction model that accepts the noised data and the continuous time as the inputs.
276
- """
277
-
278
- model_kwargs = model_kwargs or {}
279
- classifier_kwargs = classifier_kwargs or {}
280
-
281
- def get_model_input_time(t_continuous):
282
- """
283
- Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
284
- For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
285
- For continuous-time DPMs, we just use `t_continuous`.
286
- """
287
- if noise_schedule.schedule == 'discrete':
288
- return (t_continuous - 1. / noise_schedule.total_N) * 1000.
289
- else:
290
- return t_continuous
291
-
292
- def noise_pred_fn(x, t_continuous, cond=None):
293
- if t_continuous.reshape((-1,)).shape[0] == 1:
294
- t_continuous = t_continuous.expand((x.shape[0]))
295
- t_input = get_model_input_time(t_continuous)
296
- if cond is None:
297
- output = model(x, t_input, None, **model_kwargs)
298
- else:
299
- output = model(x, t_input, cond, **model_kwargs)
300
- if model_type == "noise":
301
- return output
302
- elif model_type == "x_start":
303
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
304
- dims = x.dim()
305
- return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
306
- elif model_type == "v":
307
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
308
- dims = x.dim()
309
- return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
310
- elif model_type == "score":
311
- sigma_t = noise_schedule.marginal_std(t_continuous)
312
- dims = x.dim()
313
- return -expand_dims(sigma_t, dims) * output
314
-
315
- def cond_grad_fn(x, t_input, condition):
316
- """
317
- Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
318
- """
319
- with torch.enable_grad():
320
- x_in = x.detach().requires_grad_(True)
321
- log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
322
- return torch.autograd.grad(log_prob.sum(), x_in)[0]
323
-
324
- def model_fn(x, t_continuous, condition, unconditional_condition):
325
- """
326
- The noise predicition model function that is used for DPM-Solver.
327
- """
328
- if t_continuous.reshape((-1,)).shape[0] == 1:
329
- t_continuous = t_continuous.expand((x.shape[0]))
330
- if guidance_type == "uncond":
331
- return noise_pred_fn(x, t_continuous)
332
- elif guidance_type == "classifier":
333
- assert classifier_fn is not None
334
- t_input = get_model_input_time(t_continuous)
335
- cond_grad = cond_grad_fn(x, t_input, condition)
336
- sigma_t = noise_schedule.marginal_std(t_continuous)
337
- noise = noise_pred_fn(x, t_continuous)
338
- return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
339
- elif guidance_type == "classifier-free":
340
- if guidance_scale == 1. or unconditional_condition is None:
341
- return noise_pred_fn(x, t_continuous, cond=condition)
342
- else:
343
- x_in = torch.cat([x] * 2)
344
- t_in = torch.cat([t_continuous] * 2)
345
- if isinstance(condition, dict):
346
- assert isinstance(unconditional_condition, dict)
347
- c_in = {}
348
- for k in condition:
349
- if isinstance(condition[k], list):
350
- c_in[k] = [torch.cat([
351
- unconditional_condition[k][i],
352
- condition[k][i]]) for i in range(len(condition[k]))]
353
- else:
354
- c_in[k] = torch.cat([
355
- unconditional_condition[k],
356
- condition[k]])
357
- elif isinstance(condition, list):
358
- c_in = []
359
- assert isinstance(unconditional_condition, list)
360
- for i in range(len(condition)):
361
- c_in.append(torch.cat([unconditional_condition[i], condition[i]]))
362
- else:
363
- c_in = torch.cat([unconditional_condition, condition])
364
- noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
365
- return noise_uncond + guidance_scale * (noise - noise_uncond)
366
-
367
- assert model_type in ["noise", "x_start", "v"]
368
- assert guidance_type in ["uncond", "classifier", "classifier-free"]
369
- return model_fn
370
-
371
-
372
- class UniPC:
373
- def __init__(
374
- self,
375
- model_fn,
376
- noise_schedule,
377
- predict_x0=True,
378
- thresholding=False,
379
- max_val=1.,
380
- variant='bh1',
381
- condition=None,
382
- unconditional_condition=None,
383
- before_sample=None,
384
- after_sample=None,
385
- after_update=None
386
- ):
387
- """Construct a UniPC.
388
-
389
- We support both data_prediction and noise_prediction.
390
- """
391
- self.model_fn_ = model_fn
392
- self.noise_schedule = noise_schedule
393
- self.variant = variant
394
- self.predict_x0 = predict_x0
395
- self.thresholding = thresholding
396
- self.max_val = max_val
397
- self.condition = condition
398
- self.unconditional_condition = unconditional_condition
399
- self.before_sample = before_sample
400
- self.after_sample = after_sample
401
- self.after_update = after_update
402
-
403
- def dynamic_thresholding_fn(self, x0, t=None):
404
- """
405
- The dynamic thresholding method.
406
- """
407
- dims = x0.dim()
408
- p = self.dynamic_thresholding_ratio
409
- s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
410
- s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
411
- x0 = torch.clamp(x0, -s, s) / s
412
- return x0
413
-
414
- def model(self, x, t):
415
- cond = self.condition
416
- uncond = self.unconditional_condition
417
- if self.before_sample is not None:
418
- x, t, cond, uncond = self.before_sample(x, t, cond, uncond)
419
- res = self.model_fn_(x, t, cond, uncond)
420
- if self.after_sample is not None:
421
- x, t, cond, uncond, res = self.after_sample(x, t, cond, uncond, res)
422
-
423
- if isinstance(res, tuple):
424
- # (None, pred_x0)
425
- res = res[1]
426
-
427
- return res
428
-
429
- def noise_prediction_fn(self, x, t):
430
- """
431
- Return the noise prediction model.
432
- """
433
- return self.model(x, t)
434
-
435
- def data_prediction_fn(self, x, t):
436
- """
437
- Return the data prediction model (with thresholding).
438
- """
439
- noise = self.noise_prediction_fn(x, t)
440
- dims = x.dim()
441
- alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
442
- x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
443
- if self.thresholding:
444
- p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
445
- s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
446
- s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
447
- x0 = torch.clamp(x0, -s, s) / s
448
- return x0
449
-
450
- def model_fn(self, x, t):
451
- """
452
- Convert the model to the noise prediction model or the data prediction model.
453
- """
454
- if self.predict_x0:
455
- return self.data_prediction_fn(x, t)
456
- else:
457
- return self.noise_prediction_fn(x, t)
458
-
459
- def get_time_steps(self, skip_type, t_T, t_0, N, device):
460
- """Compute the intermediate time steps for sampling.
461
- """
462
- if skip_type == 'logSNR':
463
- lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
464
- lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
465
- logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
466
- return self.noise_schedule.inverse_lambda(logSNR_steps)
467
- elif skip_type == 'time_uniform':
468
- return torch.linspace(t_T, t_0, N + 1).to(device)
469
- elif skip_type == 'time_quadratic':
470
- t_order = 2
471
- t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
472
- return t
473
- else:
474
- raise ValueError(f"Unsupported skip_type {skip_type}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'")
475
-
476
- def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
477
- """
478
- Get the order of each step for sampling by the singlestep DPM-Solver.
479
- """
480
- if order == 3:
481
- K = steps // 3 + 1
482
- if steps % 3 == 0:
483
- orders = [3,] * (K - 2) + [2, 1]
484
- elif steps % 3 == 1:
485
- orders = [3,] * (K - 1) + [1]
486
- else:
487
- orders = [3,] * (K - 1) + [2]
488
- elif order == 2:
489
- if steps % 2 == 0:
490
- K = steps // 2
491
- orders = [2,] * K
492
- else:
493
- K = steps // 2 + 1
494
- orders = [2,] * (K - 1) + [1]
495
- elif order == 1:
496
- K = steps
497
- orders = [1,] * steps
498
- else:
499
- raise ValueError("'order' must be '1' or '2' or '3'.")
500
- if skip_type == 'logSNR':
501
- # To reproduce the results in DPM-Solver paper
502
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
503
- else:
504
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
505
- return timesteps_outer, orders
506
-
507
- def denoise_to_zero_fn(self, x, s):
508
- """
509
- Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
510
- """
511
- return self.data_prediction_fn(x, s)
512
-
513
- def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
514
- if len(t.shape) == 0:
515
- t = t.view(-1)
516
- if 'bh' in self.variant:
517
- return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
518
- else:
519
- assert self.variant == 'vary_coeff'
520
- return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
521
-
522
- def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
523
- #print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
524
- ns = self.noise_schedule
525
- assert order <= len(model_prev_list)
526
-
527
- # first compute rks
528
- t_prev_0 = t_prev_list[-1]
529
- lambda_prev_0 = ns.marginal_lambda(t_prev_0)
530
- lambda_t = ns.marginal_lambda(t)
531
- model_prev_0 = model_prev_list[-1]
532
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
533
- log_alpha_t = ns.marginal_log_mean_coeff(t)
534
- alpha_t = torch.exp(log_alpha_t)
535
-
536
- h = lambda_t - lambda_prev_0
537
-
538
- rks = []
539
- D1s = []
540
- for i in range(1, order):
541
- t_prev_i = t_prev_list[-(i + 1)]
542
- model_prev_i = model_prev_list[-(i + 1)]
543
- lambda_prev_i = ns.marginal_lambda(t_prev_i)
544
- rk = (lambda_prev_i - lambda_prev_0) / h
545
- rks.append(rk)
546
- D1s.append((model_prev_i - model_prev_0) / rk)
547
-
548
- rks.append(1.)
549
- rks = torch.tensor(rks, device=x.device)
550
-
551
- K = len(rks)
552
- # build C matrix
553
- C = []
554
-
555
- col = torch.ones_like(rks)
556
- for k in range(1, K + 1):
557
- C.append(col)
558
- col = col * rks / (k + 1)
559
- C = torch.stack(C, dim=1)
560
-
561
- if len(D1s) > 0:
562
- D1s = torch.stack(D1s, dim=1) # (B, K)
563
- C_inv_p = torch.linalg.inv(C[:-1, :-1])
564
- A_p = C_inv_p
565
-
566
- if use_corrector:
567
- #print('using corrector')
568
- C_inv = torch.linalg.inv(C)
569
- A_c = C_inv
570
-
571
- hh = -h if self.predict_x0 else h
572
- h_phi_1 = torch.expm1(hh)
573
- h_phi_ks = []
574
- factorial_k = 1
575
- h_phi_k = h_phi_1
576
- for k in range(1, K + 2):
577
- h_phi_ks.append(h_phi_k)
578
- h_phi_k = h_phi_k / hh - 1 / factorial_k
579
- factorial_k *= (k + 1)
580
-
581
- model_t = None
582
- if self.predict_x0:
583
- x_t_ = (
584
- sigma_t / sigma_prev_0 * x
585
- - alpha_t * h_phi_1 * model_prev_0
586
- )
587
- # now predictor
588
- x_t = x_t_
589
- if len(D1s) > 0:
590
- # compute the residuals for predictor
591
- for k in range(K - 1):
592
- x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
593
- # now corrector
594
- if use_corrector:
595
- model_t = self.model_fn(x_t, t)
596
- D1_t = (model_t - model_prev_0)
597
- x_t = x_t_
598
- k = 0
599
- for k in range(K - 1):
600
- x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
601
- x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
602
- else:
603
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
604
- x_t_ = (
605
- (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
606
- - (sigma_t * h_phi_1) * model_prev_0
607
- )
608
- # now predictor
609
- x_t = x_t_
610
- if len(D1s) > 0:
611
- # compute the residuals for predictor
612
- for k in range(K - 1):
613
- x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
614
- # now corrector
615
- if use_corrector:
616
- model_t = self.model_fn(x_t, t)
617
- D1_t = (model_t - model_prev_0)
618
- x_t = x_t_
619
- k = 0
620
- for k in range(K - 1):
621
- x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
622
- x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
623
- return x_t, model_t
624
-
625
- def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
626
- #print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
627
- ns = self.noise_schedule
628
- assert order <= len(model_prev_list)
629
- dims = x.dim()
630
-
631
- # first compute rks
632
- t_prev_0 = t_prev_list[-1]
633
- lambda_prev_0 = ns.marginal_lambda(t_prev_0)
634
- lambda_t = ns.marginal_lambda(t)
635
- model_prev_0 = model_prev_list[-1]
636
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
637
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
638
- alpha_t = torch.exp(log_alpha_t)
639
-
640
- h = lambda_t - lambda_prev_0
641
-
642
- rks = []
643
- D1s = []
644
- for i in range(1, order):
645
- t_prev_i = t_prev_list[-(i + 1)]
646
- model_prev_i = model_prev_list[-(i + 1)]
647
- lambda_prev_i = ns.marginal_lambda(t_prev_i)
648
- rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
649
- rks.append(rk)
650
- D1s.append((model_prev_i - model_prev_0) / rk)
651
-
652
- rks.append(1.)
653
- rks = torch.tensor(rks, device=x.device)
654
-
655
- R = []
656
- b = []
657
-
658
- hh = -h[0] if self.predict_x0 else h[0]
659
- h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
660
- h_phi_k = h_phi_1 / hh - 1
661
-
662
- factorial_i = 1
663
-
664
- if self.variant == 'bh1':
665
- B_h = hh
666
- elif self.variant == 'bh2':
667
- B_h = torch.expm1(hh)
668
- else:
669
- raise NotImplementedError()
670
-
671
- for i in range(1, order + 1):
672
- R.append(torch.pow(rks, i - 1))
673
- b.append(h_phi_k * factorial_i / B_h)
674
- factorial_i *= (i + 1)
675
- h_phi_k = h_phi_k / hh - 1 / factorial_i
676
-
677
- R = torch.stack(R)
678
- b = torch.tensor(b, device=x.device)
679
-
680
- # now predictor
681
- use_predictor = len(D1s) > 0 and x_t is None
682
- if len(D1s) > 0:
683
- D1s = torch.stack(D1s, dim=1) # (B, K)
684
- if x_t is None:
685
- # for order 2, we use a simplified version
686
- if order == 2:
687
- rhos_p = torch.tensor([0.5], device=b.device)
688
- else:
689
- rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
690
- else:
691
- D1s = None
692
-
693
- if use_corrector:
694
- #print('using corrector')
695
- # for order 1, we use a simplified version
696
- if order == 1:
697
- rhos_c = torch.tensor([0.5], device=b.device)
698
- else:
699
- rhos_c = torch.linalg.solve(R, b)
700
-
701
- model_t = None
702
- if self.predict_x0:
703
- x_t_ = (
704
- expand_dims(sigma_t / sigma_prev_0, dims) * x
705
- - expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
706
- )
707
-
708
- if x_t is None:
709
- if use_predictor:
710
- pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
711
- else:
712
- pred_res = 0
713
- x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
714
-
715
- if use_corrector:
716
- model_t = self.model_fn(x_t, t)
717
- if D1s is not None:
718
- corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
719
- else:
720
- corr_res = 0
721
- D1_t = (model_t - model_prev_0)
722
- x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
723
- else:
724
- x_t_ = (
725
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
726
- - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
727
- )
728
- if x_t is None:
729
- if use_predictor:
730
- pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
731
- else:
732
- pred_res = 0
733
- x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
734
-
735
- if use_corrector:
736
- model_t = self.model_fn(x_t, t)
737
- if D1s is not None:
738
- corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
739
- else:
740
- corr_res = 0
741
- D1_t = (model_t - model_prev_0)
742
- x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
743
- return x_t, model_t
744
-
745
-
746
- def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
747
- method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
748
- atol=0.0078, rtol=0.05, corrector=False,
749
- ):
750
- t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
751
- t_T = self.noise_schedule.T if t_start is None else t_start
752
- device = x.device
753
- if method == 'multistep':
754
- assert steps >= order, "UniPC order must be < sampling steps"
755
- timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
756
- #print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps, order {order}")
757
- assert timesteps.shape[0] - 1 == steps
758
- with torch.no_grad():
759
- vec_t = timesteps[0].expand((x.shape[0]))
760
- model_prev_list = [self.model_fn(x, vec_t)]
761
- t_prev_list = [vec_t]
762
- with tqdm.tqdm(total=steps) as pbar:
763
- # Init the first `order` values by lower order multistep DPM-Solver.
764
- for init_order in range(1, order):
765
- vec_t = timesteps[init_order].expand(x.shape[0])
766
- x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
767
- if model_x is None:
768
- model_x = self.model_fn(x, vec_t)
769
- if self.after_update is not None:
770
- self.after_update(x, model_x)
771
- model_prev_list.append(model_x)
772
- t_prev_list.append(vec_t)
773
- pbar.update()
774
-
775
- for step in range(order, steps + 1):
776
- vec_t = timesteps[step].expand(x.shape[0])
777
- if lower_order_final:
778
- step_order = min(order, steps + 1 - step)
779
- else:
780
- step_order = order
781
- #print('this step order:', step_order)
782
- if step == steps:
783
- #print('do not run corrector at the last step')
784
- use_corrector = False
785
- else:
786
- use_corrector = True
787
- x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
788
- if self.after_update is not None:
789
- self.after_update(x, model_x)
790
- for i in range(order - 1):
791
- t_prev_list[i] = t_prev_list[i + 1]
792
- model_prev_list[i] = model_prev_list[i + 1]
793
- t_prev_list[-1] = vec_t
794
- # We do not need to evaluate the final model value.
795
- if step < steps:
796
- if model_x is None:
797
- model_x = self.model_fn(x, vec_t)
798
- model_prev_list[-1] = model_x
799
- pbar.update()
800
- else:
801
- raise NotImplementedError()
802
- if denoise_to_zero:
803
- x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
804
- return x
805
-
806
-
807
- #############################################################
808
- # other utility functions
809
- #############################################################
810
-
811
- def interpolate_fn(x, xp, yp):
812
- """
813
- A piecewise linear function y = f(x), using xp and yp as keypoints.
814
- We implement f(x) in a differentiable way (i.e. applicable for autograd).
815
- The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
816
-
817
- Args:
818
- x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
819
- xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
820
- yp: PyTorch tensor with shape [C, K].
821
- Returns:
822
- The function values f(x), with shape [N, C].
823
- """
824
- N, K = x.shape[0], xp.shape[1]
825
- all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
826
- sorted_all_x, x_indices = torch.sort(all_x, dim=2)
827
- x_idx = torch.argmin(x_indices, dim=2)
828
- cand_start_idx = x_idx - 1
829
- start_idx = torch.where(
830
- torch.eq(x_idx, 0),
831
- torch.tensor(1, device=x.device),
832
- torch.where(
833
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
834
- ),
835
- )
836
- end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
837
- start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
838
- end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
839
- start_idx2 = torch.where(
840
- torch.eq(x_idx, 0),
841
- torch.tensor(0, device=x.device),
842
- torch.where(
843
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
844
- ),
845
- )
846
- y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
847
- start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
848
- end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
849
- cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
850
- return cand
851
-
852
-
853
- def expand_dims(v, dims):
854
- """
855
- Expand the tensor `v` to the dim `dims`.
856
-
857
- Args:
858
- `v`: a PyTorch tensor with shape [N].
859
- `dim`: a `int`.
860
- Returns:
861
- a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
862
- """
863
- return v[(...,) + (None,)*(dims - 1)]