PennyJX commited on
Commit
1def345
1 Parent(s): c09f0cb

Upload ddpm_edit.py

Browse files
Files changed (1) hide show
  1. modules/ddpm_edit.py +1460 -0
modules/ddpm_edit.py ADDED
@@ -0,0 +1,1460 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ wild mixture of
3
+ https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
4
+ https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
+ https://github.com/CompVis/taming-transformers
6
+ -- merci
7
+ """
8
+
9
+ # File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion).
10
+ # See more details in LICENSE.
11
+
12
+ import torch
13
+ import torch.nn as nn
14
+ import numpy as np
15
+ import pytorch_lightning as pl
16
+ from torch.optim.lr_scheduler import LambdaLR
17
+ from einops import rearrange, repeat
18
+ from contextlib import contextmanager
19
+ from functools import partial
20
+ from tqdm import tqdm
21
+ from torchvision.utils import make_grid
22
+ from pytorch_lightning.utilities.distributed import rank_zero_only
23
+
24
+ from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
25
+ from ldm.modules.ema import LitEma
26
+ from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
27
+ from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
28
+ from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
29
+ from ldm.models.diffusion.ddim import DDIMSampler
30
+
31
+ try:
32
+ from ldm.models.autoencoder import VQModelInterface
33
+ except Exception:
34
+ class VQModelInterface:
35
+ pass
36
+
37
+ __conditioning_keys__ = {'concat': 'c_concat',
38
+ 'crossattn': 'c_crossattn',
39
+ 'adm': 'y'}
40
+
41
+
42
+ def disabled_train(self, mode=True):
43
+ """Overwrite model.train with this function to make sure train/eval mode
44
+ does not change anymore."""
45
+ return self
46
+
47
+
48
+ def uniform_on_device(r1, r2, shape, device):
49
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
50
+
51
+
52
+ class DDPM(pl.LightningModule):
53
+ # classic DDPM with Gaussian diffusion, in image space
54
+ def __init__(self,
55
+ unet_config,
56
+ timesteps=1000,
57
+ beta_schedule="linear",
58
+ loss_type="l2",
59
+ ckpt_path=None,
60
+ ignore_keys=None,
61
+ load_only_unet=False,
62
+ monitor="val/loss",
63
+ use_ema=True,
64
+ first_stage_key="image",
65
+ image_size=256,
66
+ channels=3,
67
+ log_every_t=100,
68
+ clip_denoised=True,
69
+ linear_start=1e-4,
70
+ linear_end=2e-2,
71
+ cosine_s=8e-3,
72
+ given_betas=None,
73
+ original_elbo_weight=0.,
74
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
75
+ l_simple_weight=1.,
76
+ conditioning_key=None,
77
+ parameterization="eps", # all assuming fixed variance schedules
78
+ scheduler_config=None,
79
+ use_positional_encodings=False,
80
+ learn_logvar=False,
81
+ logvar_init=0.,
82
+ load_ema=True,
83
+ ):
84
+ super().__init__()
85
+ assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
86
+ self.parameterization = parameterization
87
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
88
+ self.cond_stage_model = None
89
+ self.clip_denoised = clip_denoised
90
+ self.log_every_t = log_every_t
91
+ self.first_stage_key = first_stage_key
92
+ self.image_size = image_size # try conv?
93
+ self.channels = channels
94
+ self.use_positional_encodings = use_positional_encodings
95
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
96
+ count_params(self.model, verbose=True)
97
+ self.use_ema = use_ema
98
+
99
+ self.use_scheduler = scheduler_config is not None
100
+ if self.use_scheduler:
101
+ self.scheduler_config = scheduler_config
102
+
103
+ self.v_posterior = v_posterior
104
+ self.original_elbo_weight = original_elbo_weight
105
+ self.l_simple_weight = l_simple_weight
106
+
107
+ if monitor is not None:
108
+ self.monitor = monitor
109
+
110
+ if self.use_ema and load_ema:
111
+ self.model_ema = LitEma(self.model)
112
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
113
+
114
+ if ckpt_path is not None:
115
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet)
116
+
117
+ # If initialing from EMA-only checkpoint, create EMA model after loading.
118
+ if self.use_ema and not load_ema:
119
+ self.model_ema = LitEma(self.model)
120
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
121
+
122
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
123
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
124
+
125
+ self.loss_type = loss_type
126
+
127
+ self.learn_logvar = learn_logvar
128
+ self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
129
+ if self.learn_logvar:
130
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
131
+
132
+
133
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
134
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
135
+ if exists(given_betas):
136
+ betas = given_betas
137
+ else:
138
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
139
+ cosine_s=cosine_s)
140
+ alphas = 1. - betas
141
+ alphas_cumprod = np.cumprod(alphas, axis=0)
142
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
143
+
144
+ timesteps, = betas.shape
145
+ self.num_timesteps = int(timesteps)
146
+ self.linear_start = linear_start
147
+ self.linear_end = linear_end
148
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
149
+
150
+ to_torch = partial(torch.tensor, dtype=torch.float32)
151
+
152
+ self.register_buffer('betas', to_torch(betas))
153
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
154
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
155
+
156
+ # calculations for diffusion q(x_t | x_{t-1}) and others
157
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
158
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
159
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
160
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
161
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
162
+
163
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
164
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
165
+ 1. - alphas_cumprod) + self.v_posterior * betas
166
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
167
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
168
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
169
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
170
+ self.register_buffer('posterior_mean_coef1', to_torch(
171
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
172
+ self.register_buffer('posterior_mean_coef2', to_torch(
173
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
174
+
175
+ if self.parameterization == "eps":
176
+ lvlb_weights = self.betas ** 2 / (
177
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
178
+ elif self.parameterization == "x0":
179
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
180
+ else:
181
+ raise NotImplementedError("mu not supported")
182
+ # TODO how to choose this term
183
+ lvlb_weights[0] = lvlb_weights[1]
184
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
185
+ assert not torch.isnan(self.lvlb_weights).all()
186
+
187
+ @contextmanager
188
+ def ema_scope(self, context=None):
189
+ if self.use_ema:
190
+ self.model_ema.store(self.model.parameters())
191
+ self.model_ema.copy_to(self.model)
192
+ if context is not None:
193
+ print(f"{context}: Switched to EMA weights")
194
+ try:
195
+ yield None
196
+ finally:
197
+ if self.use_ema:
198
+ self.model_ema.restore(self.model.parameters())
199
+ if context is not None:
200
+ print(f"{context}: Restored training weights")
201
+
202
+ def init_from_ckpt(self, path, ignore_keys=None, only_model=False):
203
+ ignore_keys = ignore_keys or []
204
+
205
+ sd = torch.load(path, map_location="cpu")
206
+ if "state_dict" in list(sd.keys()):
207
+ sd = sd["state_dict"]
208
+ keys = list(sd.keys())
209
+
210
+ # Our model adds additional channels to the first layer to condition on an input image.
211
+ # For the first layer, copy existing channel weights and initialize new channel weights to zero.
212
+ input_keys = [
213
+ "model.diffusion_model.input_blocks.0.0.weight",
214
+ "model_ema.diffusion_modelinput_blocks00weight",
215
+ ]
216
+
217
+ self_sd = self.state_dict()
218
+ for input_key in input_keys:
219
+ if input_key not in sd or input_key not in self_sd:
220
+ continue
221
+
222
+ input_weight = self_sd[input_key]
223
+
224
+ if input_weight.size() != sd[input_key].size():
225
+ print(f"Manual init: {input_key}")
226
+ input_weight.zero_()
227
+ input_weight[:, :4, :, :].copy_(sd[input_key])
228
+ ignore_keys.append(input_key)
229
+
230
+ for k in keys:
231
+ for ik in ignore_keys:
232
+ if k.startswith(ik):
233
+ print(f"Deleting key {k} from state_dict.")
234
+ del sd[k]
235
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
236
+ sd, strict=False)
237
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
238
+ if missing:
239
+ print(f"Missing Keys: {missing}")
240
+ if unexpected:
241
+ print(f"Unexpected Keys: {unexpected}")
242
+
243
+ def q_mean_variance(self, x_start, t):
244
+ """
245
+ Get the distribution q(x_t | x_0).
246
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
247
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
248
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
249
+ """
250
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
251
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
252
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
253
+ return mean, variance, log_variance
254
+
255
+ def predict_start_from_noise(self, x_t, t, noise):
256
+ return (
257
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
258
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
259
+ )
260
+
261
+ def q_posterior(self, x_start, x_t, t):
262
+ posterior_mean = (
263
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
264
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
265
+ )
266
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
267
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
268
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
269
+
270
+ def p_mean_variance(self, x, t, clip_denoised: bool):
271
+ model_out = self.model(x, t)
272
+ if self.parameterization == "eps":
273
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
274
+ elif self.parameterization == "x0":
275
+ x_recon = model_out
276
+ if clip_denoised:
277
+ x_recon.clamp_(-1., 1.)
278
+
279
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
280
+ return model_mean, posterior_variance, posterior_log_variance
281
+
282
+ @torch.no_grad()
283
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
284
+ b, *_, device = *x.shape, x.device
285
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
286
+ noise = noise_like(x.shape, device, repeat_noise)
287
+ # no noise when t == 0
288
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
289
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
290
+
291
+ @torch.no_grad()
292
+ def p_sample_loop(self, shape, return_intermediates=False):
293
+ device = self.betas.device
294
+ b = shape[0]
295
+ img = torch.randn(shape, device=device)
296
+ intermediates = [img]
297
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
298
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
299
+ clip_denoised=self.clip_denoised)
300
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
301
+ intermediates.append(img)
302
+ if return_intermediates:
303
+ return img, intermediates
304
+ return img
305
+
306
+ @torch.no_grad()
307
+ def sample(self, batch_size=16, return_intermediates=False):
308
+ image_size = self.image_size
309
+ channels = self.channels
310
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
311
+ return_intermediates=return_intermediates)
312
+
313
+ def q_sample(self, x_start, t, noise=None):
314
+ noise = default(noise, lambda: torch.randn_like(x_start))
315
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
316
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
317
+
318
+ def get_loss(self, pred, target, mean=True):
319
+ if self.loss_type == 'l1':
320
+ loss = (target - pred).abs()
321
+ if mean:
322
+ loss = loss.mean()
323
+ elif self.loss_type == 'l2':
324
+ if mean:
325
+ loss = torch.nn.functional.mse_loss(target, pred)
326
+ else:
327
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
328
+ else:
329
+ raise NotImplementedError("unknown loss type '{loss_type}'")
330
+
331
+ return loss
332
+
333
+ def p_losses(self, x_start, t, noise=None):
334
+ noise = default(noise, lambda: torch.randn_like(x_start))
335
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
336
+ model_out = self.model(x_noisy, t)
337
+
338
+ loss_dict = {}
339
+ if self.parameterization == "eps":
340
+ target = noise
341
+ elif self.parameterization == "x0":
342
+ target = x_start
343
+ else:
344
+ raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
345
+
346
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
347
+
348
+ log_prefix = 'train' if self.training else 'val'
349
+
350
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
351
+ loss_simple = loss.mean() * self.l_simple_weight
352
+
353
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
354
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
355
+
356
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
357
+
358
+ loss_dict.update({f'{log_prefix}/loss': loss})
359
+
360
+ return loss, loss_dict
361
+
362
+ def forward(self, x, *args, **kwargs):
363
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
364
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
365
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
366
+ return self.p_losses(x, t, *args, **kwargs)
367
+
368
+ def get_input(self, batch, k):
369
+ return batch[k]
370
+
371
+ def shared_step(self, batch):
372
+ x = self.get_input(batch, self.first_stage_key)
373
+ loss, loss_dict = self(x)
374
+ return loss, loss_dict
375
+
376
+ def training_step(self, batch, batch_idx):
377
+ loss, loss_dict = self.shared_step(batch)
378
+
379
+ self.log_dict(loss_dict, prog_bar=True,
380
+ logger=True, on_step=True, on_epoch=True)
381
+
382
+ self.log("global_step", self.global_step,
383
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
384
+
385
+ if self.use_scheduler:
386
+ lr = self.optimizers().param_groups[0]['lr']
387
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
388
+
389
+ return loss
390
+
391
+ @torch.no_grad()
392
+ def validation_step(self, batch, batch_idx):
393
+ _, loss_dict_no_ema = self.shared_step(batch)
394
+ with self.ema_scope():
395
+ _, loss_dict_ema = self.shared_step(batch)
396
+ loss_dict_ema = {f"{key}_ema": loss_dict_ema[key] for key in loss_dict_ema}
397
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
398
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
399
+
400
+ def on_train_batch_end(self, *args, **kwargs):
401
+ if self.use_ema:
402
+ self.model_ema(self.model)
403
+
404
+ def _get_rows_from_list(self, samples):
405
+ n_imgs_per_row = len(samples)
406
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
407
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
408
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
409
+ return denoise_grid
410
+
411
+ @torch.no_grad()
412
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
413
+ log = {}
414
+ x = self.get_input(batch, self.first_stage_key)
415
+ N = min(x.shape[0], N)
416
+ n_row = min(x.shape[0], n_row)
417
+ x = x.to(self.device)[:N]
418
+ log["inputs"] = x
419
+
420
+ # get diffusion row
421
+ diffusion_row = []
422
+ x_start = x[:n_row]
423
+
424
+ for t in range(self.num_timesteps):
425
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
426
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
427
+ t = t.to(self.device).long()
428
+ noise = torch.randn_like(x_start)
429
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
430
+ diffusion_row.append(x_noisy)
431
+
432
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
433
+
434
+ if sample:
435
+ # get denoise row
436
+ with self.ema_scope("Plotting"):
437
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
438
+
439
+ log["samples"] = samples
440
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
441
+
442
+ if return_keys:
443
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
444
+ return log
445
+ else:
446
+ return {key: log[key] for key in return_keys}
447
+ return log
448
+
449
+ def configure_optimizers(self):
450
+ lr = self.learning_rate
451
+ params = list(self.model.parameters())
452
+ if self.learn_logvar:
453
+ params = params + [self.logvar]
454
+ opt = torch.optim.AdamW(params, lr=lr)
455
+ return opt
456
+
457
+
458
+ class LatentDiffusion(DDPM):
459
+ """main class"""
460
+ def __init__(self,
461
+ first_stage_config,
462
+ cond_stage_config,
463
+ num_timesteps_cond=None,
464
+ cond_stage_key="image",
465
+ cond_stage_trainable=False,
466
+ concat_mode=True,
467
+ cond_stage_forward=None,
468
+ conditioning_key=None,
469
+ scale_factor=1.0,
470
+ scale_by_std=False,
471
+ load_ema=True,
472
+ *args, **kwargs):
473
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
474
+ self.scale_by_std = scale_by_std
475
+ assert self.num_timesteps_cond <= kwargs['timesteps']
476
+ # for backwards compatibility after implementation of DiffusionWrapper
477
+ if conditioning_key is None:
478
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
479
+ if cond_stage_config == '__is_unconditional__':
480
+ conditioning_key = None
481
+ ckpt_path = kwargs.pop("ckpt_path", None)
482
+ ignore_keys = kwargs.pop("ignore_keys", [])
483
+ super().__init__(*args, conditioning_key=conditioning_key, load_ema=load_ema, **kwargs)
484
+ self.concat_mode = concat_mode
485
+ self.cond_stage_trainable = cond_stage_trainable
486
+ self.cond_stage_key = cond_stage_key
487
+ try:
488
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
489
+ except Exception:
490
+ self.num_downs = 0
491
+ if not scale_by_std:
492
+ self.scale_factor = scale_factor
493
+ else:
494
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
495
+ self.instantiate_first_stage(first_stage_config)
496
+ self.instantiate_cond_stage(cond_stage_config)
497
+ self.cond_stage_forward = cond_stage_forward
498
+ self.clip_denoised = False
499
+ self.bbox_tokenizer = None
500
+
501
+ self.restarted_from_ckpt = False
502
+ if ckpt_path is not None:
503
+ self.init_from_ckpt(ckpt_path, ignore_keys)
504
+ self.restarted_from_ckpt = True
505
+
506
+ if self.use_ema and not load_ema:
507
+ self.model_ema = LitEma(self.model)
508
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
509
+
510
+ def make_cond_schedule(self, ):
511
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
512
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
513
+ self.cond_ids[:self.num_timesteps_cond] = ids
514
+
515
+ @rank_zero_only
516
+ @torch.no_grad()
517
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
518
+ # only for very first batch
519
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
520
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
521
+ # set rescale weight to 1./std of encodings
522
+ print("### USING STD-RESCALING ###")
523
+ x = super().get_input(batch, self.first_stage_key)
524
+ x = x.to(self.device)
525
+ encoder_posterior = self.encode_first_stage(x)
526
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
527
+ del self.scale_factor
528
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
529
+ print(f"setting self.scale_factor to {self.scale_factor}")
530
+ print("### USING STD-RESCALING ###")
531
+
532
+ def register_schedule(self,
533
+ given_betas=None, beta_schedule="linear", timesteps=1000,
534
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
535
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
536
+
537
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
538
+ if self.shorten_cond_schedule:
539
+ self.make_cond_schedule()
540
+
541
+ def instantiate_first_stage(self, config):
542
+ model = instantiate_from_config(config)
543
+ self.first_stage_model = model.eval()
544
+ self.first_stage_model.train = disabled_train
545
+ for param in self.first_stage_model.parameters():
546
+ param.requires_grad = False
547
+
548
+ def instantiate_cond_stage(self, config):
549
+ if not self.cond_stage_trainable:
550
+ if config == "__is_first_stage__":
551
+ print("Using first stage also as cond stage.")
552
+ self.cond_stage_model = self.first_stage_model
553
+ elif config == "__is_unconditional__":
554
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
555
+ self.cond_stage_model = None
556
+ # self.be_unconditional = True
557
+ else:
558
+ model = instantiate_from_config(config)
559
+ self.cond_stage_model = model.eval()
560
+ self.cond_stage_model.train = disabled_train
561
+ for param in self.cond_stage_model.parameters():
562
+ param.requires_grad = False
563
+ else:
564
+ assert config != '__is_first_stage__'
565
+ assert config != '__is_unconditional__'
566
+ model = instantiate_from_config(config)
567
+ self.cond_stage_model = model
568
+
569
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
570
+ denoise_row = []
571
+ for zd in tqdm(samples, desc=desc):
572
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
573
+ force_not_quantize=force_no_decoder_quantization))
574
+ n_imgs_per_row = len(denoise_row)
575
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
576
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
577
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
578
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
579
+ return denoise_grid
580
+
581
+ def get_first_stage_encoding(self, encoder_posterior):
582
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
583
+ z = encoder_posterior.sample()
584
+ elif isinstance(encoder_posterior, torch.Tensor):
585
+ z = encoder_posterior
586
+ else:
587
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
588
+ return self.scale_factor * z
589
+
590
+ def get_learned_conditioning(self, c):
591
+ if self.cond_stage_forward is None:
592
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
593
+ c = self.cond_stage_model.encode(c)
594
+ if isinstance(c, DiagonalGaussianDistribution):
595
+ c = c.mode()
596
+ else:
597
+ c = self.cond_stage_model(c)
598
+ else:
599
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
600
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
601
+ return c
602
+
603
+ def meshgrid(self, h, w):
604
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
605
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
606
+
607
+ arr = torch.cat([y, x], dim=-1)
608
+ return arr
609
+
610
+ def delta_border(self, h, w):
611
+ """
612
+ :param h: height
613
+ :param w: width
614
+ :return: normalized distance to image border,
615
+ wtith min distance = 0 at border and max dist = 0.5 at image center
616
+ """
617
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
618
+ arr = self.meshgrid(h, w) / lower_right_corner
619
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
620
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
621
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
622
+ return edge_dist
623
+
624
+ def get_weighting(self, h, w, Ly, Lx, device):
625
+ weighting = self.delta_border(h, w)
626
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
627
+ self.split_input_params["clip_max_weight"], )
628
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
629
+
630
+ if self.split_input_params["tie_braker"]:
631
+ L_weighting = self.delta_border(Ly, Lx)
632
+ L_weighting = torch.clip(L_weighting,
633
+ self.split_input_params["clip_min_tie_weight"],
634
+ self.split_input_params["clip_max_tie_weight"])
635
+
636
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
637
+ weighting = weighting * L_weighting
638
+ return weighting
639
+
640
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
641
+ """
642
+ :param x: img of size (bs, c, h, w)
643
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
644
+ """
645
+ bs, nc, h, w = x.shape
646
+
647
+ # number of crops in image
648
+ Ly = (h - kernel_size[0]) // stride[0] + 1
649
+ Lx = (w - kernel_size[1]) // stride[1] + 1
650
+
651
+ if uf == 1 and df == 1:
652
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
653
+ unfold = torch.nn.Unfold(**fold_params)
654
+
655
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
656
+
657
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
658
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
659
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
660
+
661
+ elif uf > 1 and df == 1:
662
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
663
+ unfold = torch.nn.Unfold(**fold_params)
664
+
665
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
666
+ dilation=1, padding=0,
667
+ stride=(stride[0] * uf, stride[1] * uf))
668
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
669
+
670
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
671
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
672
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
673
+
674
+ elif df > 1 and uf == 1:
675
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
676
+ unfold = torch.nn.Unfold(**fold_params)
677
+
678
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
679
+ dilation=1, padding=0,
680
+ stride=(stride[0] // df, stride[1] // df))
681
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
682
+
683
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
684
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
685
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
686
+
687
+ else:
688
+ raise NotImplementedError
689
+
690
+ return fold, unfold, normalization, weighting
691
+
692
+ @torch.no_grad()
693
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
694
+ cond_key=None, return_original_cond=False, bs=None, uncond=0.05):
695
+ x = super().get_input(batch, k)
696
+ if bs is not None:
697
+ x = x[:bs]
698
+ x = x.to(self.device)
699
+ encoder_posterior = self.encode_first_stage(x)
700
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
701
+ cond_key = cond_key or self.cond_stage_key
702
+ xc = super().get_input(batch, cond_key)
703
+ if bs is not None:
704
+ xc["c_crossattn"] = xc["c_crossattn"][:bs]
705
+ xc["c_concat"] = xc["c_concat"][:bs]
706
+ cond = {}
707
+
708
+ # To support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%.
709
+ random = torch.rand(x.size(0), device=x.device)
710
+ prompt_mask = rearrange(random < 2 * uncond, "n -> n 1 1")
711
+ input_mask = 1 - rearrange((random >= uncond).float() * (random < 3 * uncond).float(), "n -> n 1 1 1")
712
+
713
+ null_prompt = self.get_learned_conditioning([""])
714
+ cond["c_crossattn"] = [torch.where(prompt_mask, null_prompt, self.get_learned_conditioning(xc["c_crossattn"]).detach())]
715
+ cond["c_concat"] = [input_mask * self.encode_first_stage((xc["c_concat"].to(self.device))).mode().detach()]
716
+
717
+ out = [z, cond]
718
+ if return_first_stage_outputs:
719
+ xrec = self.decode_first_stage(z)
720
+ out.extend([x, xrec])
721
+ if return_original_cond:
722
+ out.append(xc)
723
+ return out
724
+
725
+ @torch.no_grad()
726
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
727
+ if predict_cids:
728
+ if z.dim() == 4:
729
+ z = torch.argmax(z.exp(), dim=1).long()
730
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
731
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
732
+
733
+ z = 1. / self.scale_factor * z
734
+
735
+ if hasattr(self, "split_input_params"):
736
+ if self.split_input_params["patch_distributed_vq"]:
737
+ ks = self.split_input_params["ks"] # eg. (128, 128)
738
+ stride = self.split_input_params["stride"] # eg. (64, 64)
739
+ uf = self.split_input_params["vqf"]
740
+ bs, nc, h, w = z.shape
741
+ if ks[0] > h or ks[1] > w:
742
+ ks = (min(ks[0], h), min(ks[1], w))
743
+ print("reducing Kernel")
744
+
745
+ if stride[0] > h or stride[1] > w:
746
+ stride = (min(stride[0], h), min(stride[1], w))
747
+ print("reducing stride")
748
+
749
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
750
+
751
+ z = unfold(z) # (bn, nc * prod(**ks), L)
752
+ # 1. Reshape to img shape
753
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
754
+
755
+ # 2. apply model loop over last dim
756
+ if isinstance(self.first_stage_model, VQModelInterface):
757
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
758
+ force_not_quantize=predict_cids or force_not_quantize)
759
+ for i in range(z.shape[-1])]
760
+ else:
761
+
762
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
763
+ for i in range(z.shape[-1])]
764
+
765
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
766
+ o = o * weighting
767
+ # Reverse 1. reshape to img shape
768
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
769
+ # stitch crops together
770
+ decoded = fold(o)
771
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
772
+ return decoded
773
+ else:
774
+ if isinstance(self.first_stage_model, VQModelInterface):
775
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
776
+ else:
777
+ return self.first_stage_model.decode(z)
778
+
779
+ else:
780
+ if isinstance(self.first_stage_model, VQModelInterface):
781
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
782
+ else:
783
+ return self.first_stage_model.decode(z)
784
+
785
+ # same as above but without decorator
786
+ def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
787
+ if predict_cids:
788
+ if z.dim() == 4:
789
+ z = torch.argmax(z.exp(), dim=1).long()
790
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
791
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
792
+
793
+ z = 1. / self.scale_factor * z
794
+
795
+ if hasattr(self, "split_input_params"):
796
+ if self.split_input_params["patch_distributed_vq"]:
797
+ ks = self.split_input_params["ks"] # eg. (128, 128)
798
+ stride = self.split_input_params["stride"] # eg. (64, 64)
799
+ uf = self.split_input_params["vqf"]
800
+ bs, nc, h, w = z.shape
801
+ if ks[0] > h or ks[1] > w:
802
+ ks = (min(ks[0], h), min(ks[1], w))
803
+ print("reducing Kernel")
804
+
805
+ if stride[0] > h or stride[1] > w:
806
+ stride = (min(stride[0], h), min(stride[1], w))
807
+ print("reducing stride")
808
+
809
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
810
+
811
+ z = unfold(z) # (bn, nc * prod(**ks), L)
812
+ # 1. Reshape to img shape
813
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
814
+
815
+ # 2. apply model loop over last dim
816
+ if isinstance(self.first_stage_model, VQModelInterface):
817
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
818
+ force_not_quantize=predict_cids or force_not_quantize)
819
+ for i in range(z.shape[-1])]
820
+ else:
821
+
822
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
823
+ for i in range(z.shape[-1])]
824
+
825
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
826
+ o = o * weighting
827
+ # Reverse 1. reshape to img shape
828
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
829
+ # stitch crops together
830
+ decoded = fold(o)
831
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
832
+ return decoded
833
+ else:
834
+ if isinstance(self.first_stage_model, VQModelInterface):
835
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
836
+ else:
837
+ return self.first_stage_model.decode(z)
838
+
839
+ else:
840
+ if isinstance(self.first_stage_model, VQModelInterface):
841
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
842
+ else:
843
+ return self.first_stage_model.decode(z)
844
+
845
+ @torch.no_grad()
846
+ def encode_first_stage(self, x):
847
+ if hasattr(self, "split_input_params"):
848
+ if self.split_input_params["patch_distributed_vq"]:
849
+ ks = self.split_input_params["ks"] # eg. (128, 128)
850
+ stride = self.split_input_params["stride"] # eg. (64, 64)
851
+ df = self.split_input_params["vqf"]
852
+ self.split_input_params['original_image_size'] = x.shape[-2:]
853
+ bs, nc, h, w = x.shape
854
+ if ks[0] > h or ks[1] > w:
855
+ ks = (min(ks[0], h), min(ks[1], w))
856
+ print("reducing Kernel")
857
+
858
+ if stride[0] > h or stride[1] > w:
859
+ stride = (min(stride[0], h), min(stride[1], w))
860
+ print("reducing stride")
861
+
862
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
863
+ z = unfold(x) # (bn, nc * prod(**ks), L)
864
+ # Reshape to img shape
865
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
866
+
867
+ output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
868
+ for i in range(z.shape[-1])]
869
+
870
+ o = torch.stack(output_list, axis=-1)
871
+ o = o * weighting
872
+
873
+ # Reverse reshape to img shape
874
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
875
+ # stitch crops together
876
+ decoded = fold(o)
877
+ decoded = decoded / normalization
878
+ return decoded
879
+
880
+ else:
881
+ return self.first_stage_model.encode(x)
882
+ else:
883
+ return self.first_stage_model.encode(x)
884
+
885
+ def shared_step(self, batch, **kwargs):
886
+ x, c = self.get_input(batch, self.first_stage_key)
887
+ loss = self(x, c)
888
+ return loss
889
+
890
+ def forward(self, x, c, *args, **kwargs):
891
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
892
+ if self.model.conditioning_key is not None:
893
+ assert c is not None
894
+ if self.cond_stage_trainable:
895
+ c = self.get_learned_conditioning(c)
896
+ if self.shorten_cond_schedule: # TODO: drop this option
897
+ tc = self.cond_ids[t].to(self.device)
898
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
899
+ return self.p_losses(x, c, t, *args, **kwargs)
900
+
901
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
902
+
903
+ if isinstance(cond, dict):
904
+ # hybrid case, cond is exptected to be a dict
905
+ pass
906
+ else:
907
+ if not isinstance(cond, list):
908
+ cond = [cond]
909
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
910
+ cond = {key: cond}
911
+
912
+ if hasattr(self, "split_input_params"):
913
+ assert len(cond) == 1 # todo can only deal with one conditioning atm
914
+ assert not return_ids
915
+ ks = self.split_input_params["ks"] # eg. (128, 128)
916
+ stride = self.split_input_params["stride"] # eg. (64, 64)
917
+
918
+ h, w = x_noisy.shape[-2:]
919
+
920
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
921
+
922
+ z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
923
+ # Reshape to img shape
924
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
925
+ z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
926
+
927
+ if self.cond_stage_key in ["image", "LR_image", "segmentation",
928
+ 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
929
+ c_key = next(iter(cond.keys())) # get key
930
+ c = next(iter(cond.values())) # get value
931
+ assert (len(c) == 1) # todo extend to list with more than one elem
932
+ c = c[0] # get element
933
+
934
+ c = unfold(c)
935
+ c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
936
+
937
+ cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
938
+
939
+ elif self.cond_stage_key == 'coordinates_bbox':
940
+ assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
941
+
942
+ # assuming padding of unfold is always 0 and its dilation is always 1
943
+ n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
944
+ full_img_h, full_img_w = self.split_input_params['original_image_size']
945
+ # as we are operating on latents, we need the factor from the original image size to the
946
+ # spatial latent size to properly rescale the crops for regenerating the bbox annotations
947
+ num_downs = self.first_stage_model.encoder.num_resolutions - 1
948
+ rescale_latent = 2 ** (num_downs)
949
+
950
+ # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
951
+ # need to rescale the tl patch coordinates to be in between (0,1)
952
+ tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
953
+ rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
954
+ for patch_nr in range(z.shape[-1])]
955
+
956
+ # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
957
+ patch_limits = [(x_tl, y_tl,
958
+ rescale_latent * ks[0] / full_img_w,
959
+ rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
960
+ # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
961
+
962
+ # tokenize crop coordinates for the bounding boxes of the respective patches
963
+ patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
964
+ for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
965
+ print(patch_limits_tknzd[0].shape)
966
+ # cut tknzd crop position from conditioning
967
+ assert isinstance(cond, dict), 'cond must be dict to be fed into model'
968
+ cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
969
+ print(cut_cond.shape)
970
+
971
+ adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
972
+ adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
973
+ print(adapted_cond.shape)
974
+ adapted_cond = self.get_learned_conditioning(adapted_cond)
975
+ print(adapted_cond.shape)
976
+ adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
977
+ print(adapted_cond.shape)
978
+
979
+ cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
980
+
981
+ else:
982
+ cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
983
+
984
+ # apply model by loop over crops
985
+ output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
986
+ assert not isinstance(output_list[0],
987
+ tuple) # todo cant deal with multiple model outputs check this never happens
988
+
989
+ o = torch.stack(output_list, axis=-1)
990
+ o = o * weighting
991
+ # Reverse reshape to img shape
992
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
993
+ # stitch crops together
994
+ x_recon = fold(o) / normalization
995
+
996
+ else:
997
+ x_recon = self.model(x_noisy, t, **cond)
998
+
999
+ if isinstance(x_recon, tuple) and not return_ids:
1000
+ return x_recon[0]
1001
+ else:
1002
+ return x_recon
1003
+
1004
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
1005
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
1006
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
1007
+
1008
+ def _prior_bpd(self, x_start):
1009
+ """
1010
+ Get the prior KL term for the variational lower-bound, measured in
1011
+ bits-per-dim.
1012
+ This term can't be optimized, as it only depends on the encoder.
1013
+ :param x_start: the [N x C x ...] tensor of inputs.
1014
+ :return: a batch of [N] KL values (in bits), one per batch element.
1015
+ """
1016
+ batch_size = x_start.shape[0]
1017
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
1018
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
1019
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
1020
+ return mean_flat(kl_prior) / np.log(2.0)
1021
+
1022
+ def p_losses(self, x_start, cond, t, noise=None):
1023
+ noise = default(noise, lambda: torch.randn_like(x_start))
1024
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
1025
+ model_output = self.apply_model(x_noisy, t, cond)
1026
+
1027
+ loss_dict = {}
1028
+ prefix = 'train' if self.training else 'val'
1029
+
1030
+ if self.parameterization == "x0":
1031
+ target = x_start
1032
+ elif self.parameterization == "eps":
1033
+ target = noise
1034
+ else:
1035
+ raise NotImplementedError()
1036
+
1037
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
1038
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
1039
+
1040
+ logvar_t = self.logvar[t].to(self.device)
1041
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
1042
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
1043
+ if self.learn_logvar:
1044
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
1045
+ loss_dict.update({'logvar': self.logvar.data.mean()})
1046
+
1047
+ loss = self.l_simple_weight * loss.mean()
1048
+
1049
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
1050
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
1051
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
1052
+ loss += (self.original_elbo_weight * loss_vlb)
1053
+ loss_dict.update({f'{prefix}/loss': loss})
1054
+
1055
+ return loss, loss_dict
1056
+
1057
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
1058
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
1059
+ t_in = t
1060
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
1061
+
1062
+ if score_corrector is not None:
1063
+ assert self.parameterization == "eps"
1064
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
1065
+
1066
+ if return_codebook_ids:
1067
+ model_out, logits = model_out
1068
+
1069
+ if self.parameterization == "eps":
1070
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
1071
+ elif self.parameterization == "x0":
1072
+ x_recon = model_out
1073
+ else:
1074
+ raise NotImplementedError()
1075
+
1076
+ if clip_denoised:
1077
+ x_recon.clamp_(-1., 1.)
1078
+ if quantize_denoised:
1079
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
1080
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
1081
+ if return_codebook_ids:
1082
+ return model_mean, posterior_variance, posterior_log_variance, logits
1083
+ elif return_x0:
1084
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
1085
+ else:
1086
+ return model_mean, posterior_variance, posterior_log_variance
1087
+
1088
+ @torch.no_grad()
1089
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
1090
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
1091
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
1092
+ b, *_, device = *x.shape, x.device
1093
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
1094
+ return_codebook_ids=return_codebook_ids,
1095
+ quantize_denoised=quantize_denoised,
1096
+ return_x0=return_x0,
1097
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1098
+ if return_codebook_ids:
1099
+ raise DeprecationWarning("Support dropped.")
1100
+ model_mean, _, model_log_variance, logits = outputs
1101
+ elif return_x0:
1102
+ model_mean, _, model_log_variance, x0 = outputs
1103
+ else:
1104
+ model_mean, _, model_log_variance = outputs
1105
+
1106
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
1107
+ if noise_dropout > 0.:
1108
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
1109
+ # no noise when t == 0
1110
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
1111
+
1112
+ if return_codebook_ids:
1113
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
1114
+ if return_x0:
1115
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
1116
+ else:
1117
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
1118
+
1119
+ @torch.no_grad()
1120
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
1121
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
1122
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
1123
+ log_every_t=None):
1124
+ if not log_every_t:
1125
+ log_every_t = self.log_every_t
1126
+ timesteps = self.num_timesteps
1127
+ if batch_size is not None:
1128
+ b = batch_size if batch_size is not None else shape[0]
1129
+ shape = [batch_size] + list(shape)
1130
+ else:
1131
+ b = batch_size = shape[0]
1132
+ if x_T is None:
1133
+ img = torch.randn(shape, device=self.device)
1134
+ else:
1135
+ img = x_T
1136
+ intermediates = []
1137
+ if cond is not None:
1138
+ if isinstance(cond, dict):
1139
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1140
+ [x[:batch_size] for x in cond[key]] for key in cond}
1141
+ else:
1142
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1143
+
1144
+ if start_T is not None:
1145
+ timesteps = min(timesteps, start_T)
1146
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
1147
+ total=timesteps) if verbose else reversed(
1148
+ range(0, timesteps))
1149
+ if type(temperature) == float:
1150
+ temperature = [temperature] * timesteps
1151
+
1152
+ for i in iterator:
1153
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
1154
+ if self.shorten_cond_schedule:
1155
+ assert self.model.conditioning_key != 'hybrid'
1156
+ tc = self.cond_ids[ts].to(cond.device)
1157
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1158
+
1159
+ img, x0_partial = self.p_sample(img, cond, ts,
1160
+ clip_denoised=self.clip_denoised,
1161
+ quantize_denoised=quantize_denoised, return_x0=True,
1162
+ temperature=temperature[i], noise_dropout=noise_dropout,
1163
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1164
+ if mask is not None:
1165
+ assert x0 is not None
1166
+ img_orig = self.q_sample(x0, ts)
1167
+ img = img_orig * mask + (1. - mask) * img
1168
+
1169
+ if i % log_every_t == 0 or i == timesteps - 1:
1170
+ intermediates.append(x0_partial)
1171
+ if callback:
1172
+ callback(i)
1173
+ if img_callback:
1174
+ img_callback(img, i)
1175
+ return img, intermediates
1176
+
1177
+ @torch.no_grad()
1178
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
1179
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
1180
+ mask=None, x0=None, img_callback=None, start_T=None,
1181
+ log_every_t=None):
1182
+
1183
+ if not log_every_t:
1184
+ log_every_t = self.log_every_t
1185
+ device = self.betas.device
1186
+ b = shape[0]
1187
+ if x_T is None:
1188
+ img = torch.randn(shape, device=device)
1189
+ else:
1190
+ img = x_T
1191
+
1192
+ intermediates = [img]
1193
+ if timesteps is None:
1194
+ timesteps = self.num_timesteps
1195
+
1196
+ if start_T is not None:
1197
+ timesteps = min(timesteps, start_T)
1198
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
1199
+ range(0, timesteps))
1200
+
1201
+ if mask is not None:
1202
+ assert x0 is not None
1203
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
1204
+
1205
+ for i in iterator:
1206
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
1207
+ if self.shorten_cond_schedule:
1208
+ assert self.model.conditioning_key != 'hybrid'
1209
+ tc = self.cond_ids[ts].to(cond.device)
1210
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1211
+
1212
+ img = self.p_sample(img, cond, ts,
1213
+ clip_denoised=self.clip_denoised,
1214
+ quantize_denoised=quantize_denoised)
1215
+ if mask is not None:
1216
+ img_orig = self.q_sample(x0, ts)
1217
+ img = img_orig * mask + (1. - mask) * img
1218
+
1219
+ if i % log_every_t == 0 or i == timesteps - 1:
1220
+ intermediates.append(img)
1221
+ if callback:
1222
+ callback(i)
1223
+ if img_callback:
1224
+ img_callback(img, i)
1225
+
1226
+ if return_intermediates:
1227
+ return img, intermediates
1228
+ return img
1229
+
1230
+ @torch.no_grad()
1231
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
1232
+ verbose=True, timesteps=None, quantize_denoised=False,
1233
+ mask=None, x0=None, shape=None,**kwargs):
1234
+ if shape is None:
1235
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
1236
+ if cond is not None:
1237
+ if isinstance(cond, dict):
1238
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1239
+ [x[:batch_size] for x in cond[key]] for key in cond}
1240
+ else:
1241
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1242
+ return self.p_sample_loop(cond,
1243
+ shape,
1244
+ return_intermediates=return_intermediates, x_T=x_T,
1245
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
1246
+ mask=mask, x0=x0)
1247
+
1248
+ @torch.no_grad()
1249
+ def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
1250
+
1251
+ if ddim:
1252
+ ddim_sampler = DDIMSampler(self)
1253
+ shape = (self.channels, self.image_size, self.image_size)
1254
+ samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
1255
+ shape,cond,verbose=False,**kwargs)
1256
+
1257
+ else:
1258
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
1259
+ return_intermediates=True,**kwargs)
1260
+
1261
+ return samples, intermediates
1262
+
1263
+
1264
+ @torch.no_grad()
1265
+ def log_images(self, batch, N=4, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1266
+ quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=False,
1267
+ plot_diffusion_rows=False, **kwargs):
1268
+
1269
+ use_ddim = False
1270
+
1271
+ log = {}
1272
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
1273
+ return_first_stage_outputs=True,
1274
+ force_c_encode=True,
1275
+ return_original_cond=True,
1276
+ bs=N, uncond=0)
1277
+ N = min(x.shape[0], N)
1278
+ n_row = min(x.shape[0], n_row)
1279
+ log["inputs"] = x
1280
+ log["reals"] = xc["c_concat"]
1281
+ log["reconstruction"] = xrec
1282
+ if self.model.conditioning_key is not None:
1283
+ if hasattr(self.cond_stage_model, "decode"):
1284
+ xc = self.cond_stage_model.decode(c)
1285
+ log["conditioning"] = xc
1286
+ elif self.cond_stage_key in ["caption"]:
1287
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
1288
+ log["conditioning"] = xc
1289
+ elif self.cond_stage_key == 'class_label':
1290
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
1291
+ log['conditioning'] = xc
1292
+ elif isimage(xc):
1293
+ log["conditioning"] = xc
1294
+ if ismap(xc):
1295
+ log["original_conditioning"] = self.to_rgb(xc)
1296
+
1297
+ if plot_diffusion_rows:
1298
+ # get diffusion row
1299
+ diffusion_row = []
1300
+ z_start = z[:n_row]
1301
+ for t in range(self.num_timesteps):
1302
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1303
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1304
+ t = t.to(self.device).long()
1305
+ noise = torch.randn_like(z_start)
1306
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1307
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1308
+
1309
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1310
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1311
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1312
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1313
+ log["diffusion_row"] = diffusion_grid
1314
+
1315
+ if sample:
1316
+ # get denoise row
1317
+ with self.ema_scope("Plotting"):
1318
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1319
+ ddim_steps=ddim_steps,eta=ddim_eta)
1320
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1321
+ x_samples = self.decode_first_stage(samples)
1322
+ log["samples"] = x_samples
1323
+ if plot_denoise_rows:
1324
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1325
+ log["denoise_row"] = denoise_grid
1326
+
1327
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
1328
+ self.first_stage_model, IdentityFirstStage):
1329
+ # also display when quantizing x0 while sampling
1330
+ with self.ema_scope("Plotting Quantized Denoised"):
1331
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1332
+ ddim_steps=ddim_steps,eta=ddim_eta,
1333
+ quantize_denoised=True)
1334
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
1335
+ # quantize_denoised=True)
1336
+ x_samples = self.decode_first_stage(samples.to(self.device))
1337
+ log["samples_x0_quantized"] = x_samples
1338
+
1339
+ if inpaint:
1340
+ # make a simple center square
1341
+ h, w = z.shape[2], z.shape[3]
1342
+ mask = torch.ones(N, h, w).to(self.device)
1343
+ # zeros will be filled in
1344
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1345
+ mask = mask[:, None, ...]
1346
+ with self.ema_scope("Plotting Inpaint"):
1347
+
1348
+ samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
1349
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1350
+ x_samples = self.decode_first_stage(samples.to(self.device))
1351
+ log["samples_inpainting"] = x_samples
1352
+ log["mask"] = mask
1353
+
1354
+ # outpaint
1355
+ with self.ema_scope("Plotting Outpaint"):
1356
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
1357
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1358
+ x_samples = self.decode_first_stage(samples.to(self.device))
1359
+ log["samples_outpainting"] = x_samples
1360
+
1361
+ if plot_progressive_rows:
1362
+ with self.ema_scope("Plotting Progressives"):
1363
+ img, progressives = self.progressive_denoising(c,
1364
+ shape=(self.channels, self.image_size, self.image_size),
1365
+ batch_size=N)
1366
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1367
+ log["progressive_row"] = prog_row
1368
+
1369
+ if return_keys:
1370
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1371
+ return log
1372
+ else:
1373
+ return {key: log[key] for key in return_keys}
1374
+ return log
1375
+
1376
+ def configure_optimizers(self):
1377
+ lr = self.learning_rate
1378
+ params = list(self.model.parameters())
1379
+ if self.cond_stage_trainable:
1380
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1381
+ params = params + list(self.cond_stage_model.parameters())
1382
+ if self.learn_logvar:
1383
+ print('Diffusion model optimizing logvar')
1384
+ params.append(self.logvar)
1385
+ opt = torch.optim.AdamW(params, lr=lr)
1386
+ if self.use_scheduler:
1387
+ assert 'target' in self.scheduler_config
1388
+ scheduler = instantiate_from_config(self.scheduler_config)
1389
+
1390
+ print("Setting up LambdaLR scheduler...")
1391
+ scheduler = [
1392
+ {
1393
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1394
+ 'interval': 'step',
1395
+ 'frequency': 1
1396
+ }]
1397
+ return [opt], scheduler
1398
+ return opt
1399
+
1400
+ @torch.no_grad()
1401
+ def to_rgb(self, x):
1402
+ x = x.float()
1403
+ if not hasattr(self, "colorize"):
1404
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1405
+ x = nn.functional.conv2d(x, weight=self.colorize)
1406
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1407
+ return x
1408
+
1409
+
1410
+ class DiffusionWrapper(pl.LightningModule):
1411
+ def __init__(self, diff_model_config, conditioning_key):
1412
+ super().__init__()
1413
+ self.diffusion_model = instantiate_from_config(diff_model_config)
1414
+ self.conditioning_key = conditioning_key
1415
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
1416
+
1417
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
1418
+ if self.conditioning_key is None:
1419
+ out = self.diffusion_model(x, t)
1420
+ elif self.conditioning_key == 'concat':
1421
+ xc = torch.cat([x] + c_concat, dim=1)
1422
+ out = self.diffusion_model(xc, t)
1423
+ elif self.conditioning_key == 'crossattn':
1424
+ cc = torch.cat(c_crossattn, 1)
1425
+ out = self.diffusion_model(x, t, context=cc)
1426
+ elif self.conditioning_key == 'hybrid':
1427
+ xc = torch.cat([x] + c_concat, dim=1)
1428
+ cc = torch.cat(c_crossattn, 1)
1429
+ out = self.diffusion_model(xc, t, context=cc)
1430
+ elif self.conditioning_key == 'adm':
1431
+ cc = c_crossattn[0]
1432
+ out = self.diffusion_model(x, t, y=cc)
1433
+ else:
1434
+ raise NotImplementedError()
1435
+
1436
+ return out
1437
+
1438
+
1439
+ class Layout2ImgDiffusion(LatentDiffusion):
1440
+ # TODO: move all layout-specific hacks to this class
1441
+ def __init__(self, cond_stage_key, *args, **kwargs):
1442
+ assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
1443
+ super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs)
1444
+
1445
+ def log_images(self, batch, N=8, *args, **kwargs):
1446
+ logs = super().log_images(*args, batch=batch, N=N, **kwargs)
1447
+
1448
+ key = 'train' if self.training else 'validation'
1449
+ dset = self.trainer.datamodule.datasets[key]
1450
+ mapper = dset.conditional_builders[self.cond_stage_key]
1451
+
1452
+ bbox_imgs = []
1453
+ map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
1454
+ for tknzd_bbox in batch[self.cond_stage_key][:N]:
1455
+ bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
1456
+ bbox_imgs.append(bboximg)
1457
+
1458
+ cond_img = torch.stack(bbox_imgs, dim=0)
1459
+ logs['bbox_image'] = cond_img
1460
+ return logs