Upload 8 files
Browse files- modules/textual_inversion/autocrop.py +345 -0
- modules/textual_inversion/dataset.py +246 -0
- modules/textual_inversion/image_embedding.py +220 -0
- modules/textual_inversion/learn_schedule.py +81 -0
- modules/textual_inversion/logging.py +64 -0
- modules/textual_inversion/test_embedding.png +3 -0
- modules/textual_inversion/textual_inversion.py +700 -0
- modules/textual_inversion/ui.py +38 -0
modules/textual_inversion/autocrop.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
from PIL import ImageDraw
|
6 |
+
from modules import paths_internal
|
7 |
+
from pkg_resources import parse_version
|
8 |
+
|
9 |
+
GREEN = "#0F0"
|
10 |
+
BLUE = "#00F"
|
11 |
+
RED = "#F00"
|
12 |
+
|
13 |
+
|
14 |
+
def crop_image(im, settings):
|
15 |
+
""" Intelligently crop an image to the subject matter """
|
16 |
+
|
17 |
+
scale_by = 1
|
18 |
+
if is_landscape(im.width, im.height):
|
19 |
+
scale_by = settings.crop_height / im.height
|
20 |
+
elif is_portrait(im.width, im.height):
|
21 |
+
scale_by = settings.crop_width / im.width
|
22 |
+
elif is_square(im.width, im.height):
|
23 |
+
if is_square(settings.crop_width, settings.crop_height):
|
24 |
+
scale_by = settings.crop_width / im.width
|
25 |
+
elif is_landscape(settings.crop_width, settings.crop_height):
|
26 |
+
scale_by = settings.crop_width / im.width
|
27 |
+
elif is_portrait(settings.crop_width, settings.crop_height):
|
28 |
+
scale_by = settings.crop_height / im.height
|
29 |
+
|
30 |
+
im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
|
31 |
+
im_debug = im.copy()
|
32 |
+
|
33 |
+
focus = focal_point(im_debug, settings)
|
34 |
+
|
35 |
+
# take the focal point and turn it into crop coordinates that try to center over the focal
|
36 |
+
# point but then get adjusted back into the frame
|
37 |
+
y_half = int(settings.crop_height / 2)
|
38 |
+
x_half = int(settings.crop_width / 2)
|
39 |
+
|
40 |
+
x1 = focus.x - x_half
|
41 |
+
if x1 < 0:
|
42 |
+
x1 = 0
|
43 |
+
elif x1 + settings.crop_width > im.width:
|
44 |
+
x1 = im.width - settings.crop_width
|
45 |
+
|
46 |
+
y1 = focus.y - y_half
|
47 |
+
if y1 < 0:
|
48 |
+
y1 = 0
|
49 |
+
elif y1 + settings.crop_height > im.height:
|
50 |
+
y1 = im.height - settings.crop_height
|
51 |
+
|
52 |
+
x2 = x1 + settings.crop_width
|
53 |
+
y2 = y1 + settings.crop_height
|
54 |
+
|
55 |
+
crop = [x1, y1, x2, y2]
|
56 |
+
|
57 |
+
results = []
|
58 |
+
|
59 |
+
results.append(im.crop(tuple(crop)))
|
60 |
+
|
61 |
+
if settings.annotate_image:
|
62 |
+
d = ImageDraw.Draw(im_debug)
|
63 |
+
rect = list(crop)
|
64 |
+
rect[2] -= 1
|
65 |
+
rect[3] -= 1
|
66 |
+
d.rectangle(rect, outline=GREEN)
|
67 |
+
results.append(im_debug)
|
68 |
+
if settings.destop_view_image:
|
69 |
+
im_debug.show()
|
70 |
+
|
71 |
+
return results
|
72 |
+
|
73 |
+
|
74 |
+
def focal_point(im, settings):
|
75 |
+
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
|
76 |
+
entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
|
77 |
+
face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else []
|
78 |
+
|
79 |
+
pois = []
|
80 |
+
|
81 |
+
weight_pref_total = 0
|
82 |
+
if corner_points:
|
83 |
+
weight_pref_total += settings.corner_points_weight
|
84 |
+
if entropy_points:
|
85 |
+
weight_pref_total += settings.entropy_points_weight
|
86 |
+
if face_points:
|
87 |
+
weight_pref_total += settings.face_points_weight
|
88 |
+
|
89 |
+
corner_centroid = None
|
90 |
+
if corner_points:
|
91 |
+
corner_centroid = centroid(corner_points)
|
92 |
+
corner_centroid.weight = settings.corner_points_weight / weight_pref_total
|
93 |
+
pois.append(corner_centroid)
|
94 |
+
|
95 |
+
entropy_centroid = None
|
96 |
+
if entropy_points:
|
97 |
+
entropy_centroid = centroid(entropy_points)
|
98 |
+
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
|
99 |
+
pois.append(entropy_centroid)
|
100 |
+
|
101 |
+
face_centroid = None
|
102 |
+
if face_points:
|
103 |
+
face_centroid = centroid(face_points)
|
104 |
+
face_centroid.weight = settings.face_points_weight / weight_pref_total
|
105 |
+
pois.append(face_centroid)
|
106 |
+
|
107 |
+
average_point = poi_average(pois, settings)
|
108 |
+
|
109 |
+
if settings.annotate_image:
|
110 |
+
d = ImageDraw.Draw(im)
|
111 |
+
max_size = min(im.width, im.height) * 0.07
|
112 |
+
if corner_centroid is not None:
|
113 |
+
color = BLUE
|
114 |
+
box = corner_centroid.bounding(max_size * corner_centroid.weight)
|
115 |
+
d.text((box[0], box[1] - 15), f"Edge: {corner_centroid.weight:.02f}", fill=color)
|
116 |
+
d.ellipse(box, outline=color)
|
117 |
+
if len(corner_points) > 1:
|
118 |
+
for f in corner_points:
|
119 |
+
d.rectangle(f.bounding(4), outline=color)
|
120 |
+
if entropy_centroid is not None:
|
121 |
+
color = "#ff0"
|
122 |
+
box = entropy_centroid.bounding(max_size * entropy_centroid.weight)
|
123 |
+
d.text((box[0], box[1] - 15), f"Entropy: {entropy_centroid.weight:.02f}", fill=color)
|
124 |
+
d.ellipse(box, outline=color)
|
125 |
+
if len(entropy_points) > 1:
|
126 |
+
for f in entropy_points:
|
127 |
+
d.rectangle(f.bounding(4), outline=color)
|
128 |
+
if face_centroid is not None:
|
129 |
+
color = RED
|
130 |
+
box = face_centroid.bounding(max_size * face_centroid.weight)
|
131 |
+
d.text((box[0], box[1] - 15), f"Face: {face_centroid.weight:.02f}", fill=color)
|
132 |
+
d.ellipse(box, outline=color)
|
133 |
+
if len(face_points) > 1:
|
134 |
+
for f in face_points:
|
135 |
+
d.rectangle(f.bounding(4), outline=color)
|
136 |
+
|
137 |
+
d.ellipse(average_point.bounding(max_size), outline=GREEN)
|
138 |
+
|
139 |
+
return average_point
|
140 |
+
|
141 |
+
|
142 |
+
def image_face_points(im, settings):
|
143 |
+
if settings.dnn_model_path is not None:
|
144 |
+
detector = cv2.FaceDetectorYN.create(
|
145 |
+
settings.dnn_model_path,
|
146 |
+
"",
|
147 |
+
(im.width, im.height),
|
148 |
+
0.9, # score threshold
|
149 |
+
0.3, # nms threshold
|
150 |
+
5000 # keep top k before nms
|
151 |
+
)
|
152 |
+
faces = detector.detect(np.array(im))
|
153 |
+
results = []
|
154 |
+
if faces[1] is not None:
|
155 |
+
for face in faces[1]:
|
156 |
+
x = face[0]
|
157 |
+
y = face[1]
|
158 |
+
w = face[2]
|
159 |
+
h = face[3]
|
160 |
+
results.append(
|
161 |
+
PointOfInterest(
|
162 |
+
int(x + (w * 0.5)), # face focus left/right is center
|
163 |
+
int(y + (h * 0.33)), # face focus up/down is close to the top of the head
|
164 |
+
size=w,
|
165 |
+
weight=1 / len(faces[1])
|
166 |
+
)
|
167 |
+
)
|
168 |
+
return results
|
169 |
+
else:
|
170 |
+
np_im = np.array(im)
|
171 |
+
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
|
172 |
+
|
173 |
+
tries = [
|
174 |
+
[f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01],
|
175 |
+
[f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05],
|
176 |
+
[f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05],
|
177 |
+
[f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05],
|
178 |
+
[f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05],
|
179 |
+
[f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05],
|
180 |
+
[f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05],
|
181 |
+
[f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05]
|
182 |
+
]
|
183 |
+
for t in tries:
|
184 |
+
classifier = cv2.CascadeClassifier(t[0])
|
185 |
+
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
|
186 |
+
try:
|
187 |
+
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
|
188 |
+
minNeighbors=7, minSize=(minsize, minsize),
|
189 |
+
flags=cv2.CASCADE_SCALE_IMAGE)
|
190 |
+
except Exception:
|
191 |
+
continue
|
192 |
+
|
193 |
+
if faces:
|
194 |
+
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
|
195 |
+
return [PointOfInterest((r[0] + r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0] - r[2]),
|
196 |
+
weight=1 / len(rects)) for r in rects]
|
197 |
+
return []
|
198 |
+
|
199 |
+
|
200 |
+
def image_corner_points(im, settings):
|
201 |
+
grayscale = im.convert("L")
|
202 |
+
|
203 |
+
# naive attempt at preventing focal points from collecting at watermarks near the bottom
|
204 |
+
gd = ImageDraw.Draw(grayscale)
|
205 |
+
gd.rectangle([0, im.height * .9, im.width, im.height], fill="#999")
|
206 |
+
|
207 |
+
np_im = np.array(grayscale)
|
208 |
+
|
209 |
+
points = cv2.goodFeaturesToTrack(
|
210 |
+
np_im,
|
211 |
+
maxCorners=100,
|
212 |
+
qualityLevel=0.04,
|
213 |
+
minDistance=min(grayscale.width, grayscale.height) * 0.06,
|
214 |
+
useHarrisDetector=False,
|
215 |
+
)
|
216 |
+
|
217 |
+
if points is None:
|
218 |
+
return []
|
219 |
+
|
220 |
+
focal_points = []
|
221 |
+
for point in points:
|
222 |
+
x, y = point.ravel()
|
223 |
+
focal_points.append(PointOfInterest(x, y, size=4, weight=1 / len(points)))
|
224 |
+
|
225 |
+
return focal_points
|
226 |
+
|
227 |
+
|
228 |
+
def image_entropy_points(im, settings):
|
229 |
+
landscape = im.height < im.width
|
230 |
+
portrait = im.height > im.width
|
231 |
+
if landscape:
|
232 |
+
move_idx = [0, 2]
|
233 |
+
move_max = im.size[0]
|
234 |
+
elif portrait:
|
235 |
+
move_idx = [1, 3]
|
236 |
+
move_max = im.size[1]
|
237 |
+
else:
|
238 |
+
return []
|
239 |
+
|
240 |
+
e_max = 0
|
241 |
+
crop_current = [0, 0, settings.crop_width, settings.crop_height]
|
242 |
+
crop_best = crop_current
|
243 |
+
while crop_current[move_idx[1]] < move_max:
|
244 |
+
crop = im.crop(tuple(crop_current))
|
245 |
+
e = image_entropy(crop)
|
246 |
+
|
247 |
+
if (e > e_max):
|
248 |
+
e_max = e
|
249 |
+
crop_best = list(crop_current)
|
250 |
+
|
251 |
+
crop_current[move_idx[0]] += 4
|
252 |
+
crop_current[move_idx[1]] += 4
|
253 |
+
|
254 |
+
x_mid = int(crop_best[0] + settings.crop_width / 2)
|
255 |
+
y_mid = int(crop_best[1] + settings.crop_height / 2)
|
256 |
+
|
257 |
+
return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]
|
258 |
+
|
259 |
+
|
260 |
+
def image_entropy(im):
|
261 |
+
# greyscale image entropy
|
262 |
+
# band = np.asarray(im.convert("L"))
|
263 |
+
band = np.asarray(im.convert("1"), dtype=np.uint8)
|
264 |
+
hist, _ = np.histogram(band, bins=range(0, 256))
|
265 |
+
hist = hist[hist > 0]
|
266 |
+
return -np.log2(hist / hist.sum()).sum()
|
267 |
+
|
268 |
+
|
269 |
+
def centroid(pois):
|
270 |
+
x = [poi.x for poi in pois]
|
271 |
+
y = [poi.y for poi in pois]
|
272 |
+
return PointOfInterest(sum(x) / len(pois), sum(y) / len(pois))
|
273 |
+
|
274 |
+
|
275 |
+
def poi_average(pois, settings):
|
276 |
+
weight = 0.0
|
277 |
+
x = 0.0
|
278 |
+
y = 0.0
|
279 |
+
for poi in pois:
|
280 |
+
weight += poi.weight
|
281 |
+
x += poi.x * poi.weight
|
282 |
+
y += poi.y * poi.weight
|
283 |
+
avg_x = round(weight and x / weight)
|
284 |
+
avg_y = round(weight and y / weight)
|
285 |
+
|
286 |
+
return PointOfInterest(avg_x, avg_y)
|
287 |
+
|
288 |
+
|
289 |
+
def is_landscape(w, h):
|
290 |
+
return w > h
|
291 |
+
|
292 |
+
|
293 |
+
def is_portrait(w, h):
|
294 |
+
return h > w
|
295 |
+
|
296 |
+
|
297 |
+
def is_square(w, h):
|
298 |
+
return w == h
|
299 |
+
|
300 |
+
|
301 |
+
model_dir_opencv = os.path.join(paths_internal.models_path, 'opencv')
|
302 |
+
if parse_version(cv2.__version__) >= parse_version('4.8'):
|
303 |
+
model_file_path = os.path.join(model_dir_opencv, 'face_detection_yunet_2023mar.onnx')
|
304 |
+
model_url = 'https://github.com/opencv/opencv_zoo/blob/b6e370b10f641879a87890d44e42173077154a05/models/face_detection_yunet/face_detection_yunet_2023mar.onnx?raw=true'
|
305 |
+
else:
|
306 |
+
model_file_path = os.path.join(model_dir_opencv, 'face_detection_yunet.onnx')
|
307 |
+
model_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
|
308 |
+
|
309 |
+
|
310 |
+
def download_and_cache_models():
|
311 |
+
if not os.path.exists(model_file_path):
|
312 |
+
os.makedirs(model_dir_opencv, exist_ok=True)
|
313 |
+
print(f"downloading face detection model from '{model_url}' to '{model_file_path}'")
|
314 |
+
response = requests.get(model_url)
|
315 |
+
with open(model_file_path, "wb") as f:
|
316 |
+
f.write(response.content)
|
317 |
+
return model_file_path
|
318 |
+
|
319 |
+
|
320 |
+
class PointOfInterest:
|
321 |
+
def __init__(self, x, y, weight=1.0, size=10):
|
322 |
+
self.x = x
|
323 |
+
self.y = y
|
324 |
+
self.weight = weight
|
325 |
+
self.size = size
|
326 |
+
|
327 |
+
def bounding(self, size):
|
328 |
+
return [
|
329 |
+
self.x - size // 2,
|
330 |
+
self.y - size // 2,
|
331 |
+
self.x + size // 2,
|
332 |
+
self.y + size // 2
|
333 |
+
]
|
334 |
+
|
335 |
+
|
336 |
+
class Settings:
|
337 |
+
def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False, dnn_model_path=None):
|
338 |
+
self.crop_width = crop_width
|
339 |
+
self.crop_height = crop_height
|
340 |
+
self.corner_points_weight = corner_points_weight
|
341 |
+
self.entropy_points_weight = entropy_points_weight
|
342 |
+
self.face_points_weight = face_points_weight
|
343 |
+
self.annotate_image = annotate_image
|
344 |
+
self.destop_view_image = False
|
345 |
+
self.dnn_model_path = dnn_model_path
|
modules/textual_inversion/dataset.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import PIL
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from torch.utils.data import Dataset, DataLoader, Sampler
|
7 |
+
from torchvision import transforms
|
8 |
+
from collections import defaultdict
|
9 |
+
from random import shuffle, choices
|
10 |
+
|
11 |
+
import random
|
12 |
+
import tqdm
|
13 |
+
from modules import devices, shared
|
14 |
+
import re
|
15 |
+
|
16 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
17 |
+
|
18 |
+
re_numbers_at_start = re.compile(r"^[-\d]+\s*")
|
19 |
+
|
20 |
+
|
21 |
+
class DatasetEntry:
|
22 |
+
def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None, weight=None):
|
23 |
+
self.filename = filename
|
24 |
+
self.filename_text = filename_text
|
25 |
+
self.weight = weight
|
26 |
+
self.latent_dist = latent_dist
|
27 |
+
self.latent_sample = latent_sample
|
28 |
+
self.cond = cond
|
29 |
+
self.cond_text = cond_text
|
30 |
+
self.pixel_values = pixel_values
|
31 |
+
|
32 |
+
|
33 |
+
class PersonalizedBase(Dataset):
|
34 |
+
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', varsize=False, use_weight=False):
|
35 |
+
re_word = re.compile(shared.opts.dataset_filename_word_regex) if shared.opts.dataset_filename_word_regex else None
|
36 |
+
|
37 |
+
self.placeholder_token = placeholder_token
|
38 |
+
|
39 |
+
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
40 |
+
|
41 |
+
self.dataset = []
|
42 |
+
|
43 |
+
with open(template_file, "r") as file:
|
44 |
+
lines = [x.strip() for x in file.readlines()]
|
45 |
+
|
46 |
+
self.lines = lines
|
47 |
+
|
48 |
+
assert data_root, 'dataset directory not specified'
|
49 |
+
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
|
50 |
+
assert os.listdir(data_root), "Dataset directory is empty"
|
51 |
+
|
52 |
+
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
|
53 |
+
|
54 |
+
self.shuffle_tags = shuffle_tags
|
55 |
+
self.tag_drop_out = tag_drop_out
|
56 |
+
groups = defaultdict(list)
|
57 |
+
|
58 |
+
print("Preparing dataset...")
|
59 |
+
for path in tqdm.tqdm(self.image_paths):
|
60 |
+
alpha_channel = None
|
61 |
+
if shared.state.interrupted:
|
62 |
+
raise Exception("interrupted")
|
63 |
+
try:
|
64 |
+
image = Image.open(path)
|
65 |
+
#Currently does not work for single color transparency
|
66 |
+
#We would need to read image.info['transparency'] for that
|
67 |
+
if use_weight and 'A' in image.getbands():
|
68 |
+
alpha_channel = image.getchannel('A')
|
69 |
+
image = image.convert('RGB')
|
70 |
+
if not varsize:
|
71 |
+
image = image.resize((width, height), PIL.Image.BICUBIC)
|
72 |
+
except Exception:
|
73 |
+
continue
|
74 |
+
|
75 |
+
text_filename = f"{os.path.splitext(path)[0]}.txt"
|
76 |
+
filename = os.path.basename(path)
|
77 |
+
|
78 |
+
if os.path.exists(text_filename):
|
79 |
+
with open(text_filename, "r", encoding="utf8") as file:
|
80 |
+
filename_text = file.read()
|
81 |
+
else:
|
82 |
+
filename_text = os.path.splitext(filename)[0]
|
83 |
+
filename_text = re.sub(re_numbers_at_start, '', filename_text)
|
84 |
+
if re_word:
|
85 |
+
tokens = re_word.findall(filename_text)
|
86 |
+
filename_text = (shared.opts.dataset_filename_join_string or "").join(tokens)
|
87 |
+
|
88 |
+
npimage = np.array(image).astype(np.uint8)
|
89 |
+
npimage = (npimage / 127.5 - 1.0).astype(np.float32)
|
90 |
+
|
91 |
+
torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
|
92 |
+
latent_sample = None
|
93 |
+
|
94 |
+
with devices.autocast():
|
95 |
+
latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
|
96 |
+
|
97 |
+
#Perform latent sampling, even for random sampling.
|
98 |
+
#We need the sample dimensions for the weights
|
99 |
+
if latent_sampling_method == "deterministic":
|
100 |
+
if isinstance(latent_dist, DiagonalGaussianDistribution):
|
101 |
+
# Works only for DiagonalGaussianDistribution
|
102 |
+
latent_dist.std = 0
|
103 |
+
else:
|
104 |
+
latent_sampling_method = "once"
|
105 |
+
latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
|
106 |
+
|
107 |
+
if use_weight and alpha_channel is not None:
|
108 |
+
channels, *latent_size = latent_sample.shape
|
109 |
+
weight_img = alpha_channel.resize(latent_size)
|
110 |
+
npweight = np.array(weight_img).astype(np.float32)
|
111 |
+
#Repeat for every channel in the latent sample
|
112 |
+
weight = torch.tensor([npweight] * channels).reshape([channels] + latent_size)
|
113 |
+
#Normalize the weight to a minimum of 0 and a mean of 1, that way the loss will be comparable to default.
|
114 |
+
weight -= weight.min()
|
115 |
+
weight /= weight.mean()
|
116 |
+
elif use_weight:
|
117 |
+
#If an image does not have a alpha channel, add a ones weight map anyway so we can stack it later
|
118 |
+
weight = torch.ones(latent_sample.shape)
|
119 |
+
else:
|
120 |
+
weight = None
|
121 |
+
|
122 |
+
if latent_sampling_method == "random":
|
123 |
+
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist, weight=weight)
|
124 |
+
else:
|
125 |
+
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample, weight=weight)
|
126 |
+
|
127 |
+
if not (self.tag_drop_out != 0 or self.shuffle_tags):
|
128 |
+
entry.cond_text = self.create_text(filename_text)
|
129 |
+
|
130 |
+
if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
|
131 |
+
with devices.autocast():
|
132 |
+
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
|
133 |
+
groups[image.size].append(len(self.dataset))
|
134 |
+
self.dataset.append(entry)
|
135 |
+
del torchdata
|
136 |
+
del latent_dist
|
137 |
+
del latent_sample
|
138 |
+
del weight
|
139 |
+
|
140 |
+
self.length = len(self.dataset)
|
141 |
+
self.groups = list(groups.values())
|
142 |
+
assert self.length > 0, "No images have been found in the dataset."
|
143 |
+
self.batch_size = min(batch_size, self.length)
|
144 |
+
self.gradient_step = min(gradient_step, self.length // self.batch_size)
|
145 |
+
self.latent_sampling_method = latent_sampling_method
|
146 |
+
|
147 |
+
if len(groups) > 1:
|
148 |
+
print("Buckets:")
|
149 |
+
for (w, h), ids in sorted(groups.items(), key=lambda x: x[0]):
|
150 |
+
print(f" {w}x{h}: {len(ids)}")
|
151 |
+
print()
|
152 |
+
|
153 |
+
def create_text(self, filename_text):
|
154 |
+
text = random.choice(self.lines)
|
155 |
+
tags = filename_text.split(',')
|
156 |
+
if self.tag_drop_out != 0:
|
157 |
+
tags = [t for t in tags if random.random() > self.tag_drop_out]
|
158 |
+
if self.shuffle_tags:
|
159 |
+
random.shuffle(tags)
|
160 |
+
text = text.replace("[filewords]", ','.join(tags))
|
161 |
+
text = text.replace("[name]", self.placeholder_token)
|
162 |
+
return text
|
163 |
+
|
164 |
+
def __len__(self):
|
165 |
+
return self.length
|
166 |
+
|
167 |
+
def __getitem__(self, i):
|
168 |
+
entry = self.dataset[i]
|
169 |
+
if self.tag_drop_out != 0 or self.shuffle_tags:
|
170 |
+
entry.cond_text = self.create_text(entry.filename_text)
|
171 |
+
if self.latent_sampling_method == "random":
|
172 |
+
entry.latent_sample = shared.sd_model.get_first_stage_encoding(entry.latent_dist).to(devices.cpu)
|
173 |
+
return entry
|
174 |
+
|
175 |
+
|
176 |
+
class GroupedBatchSampler(Sampler):
|
177 |
+
def __init__(self, data_source: PersonalizedBase, batch_size: int):
|
178 |
+
super().__init__(data_source)
|
179 |
+
|
180 |
+
n = len(data_source)
|
181 |
+
self.groups = data_source.groups
|
182 |
+
self.len = n_batch = n // batch_size
|
183 |
+
expected = [len(g) / n * n_batch * batch_size for g in data_source.groups]
|
184 |
+
self.base = [int(e) // batch_size for e in expected]
|
185 |
+
self.n_rand_batches = nrb = n_batch - sum(self.base)
|
186 |
+
self.probs = [e%batch_size/nrb/batch_size if nrb>0 else 0 for e in expected]
|
187 |
+
self.batch_size = batch_size
|
188 |
+
|
189 |
+
def __len__(self):
|
190 |
+
return self.len
|
191 |
+
|
192 |
+
def __iter__(self):
|
193 |
+
b = self.batch_size
|
194 |
+
|
195 |
+
for g in self.groups:
|
196 |
+
shuffle(g)
|
197 |
+
|
198 |
+
batches = []
|
199 |
+
for g in self.groups:
|
200 |
+
batches.extend(g[i*b:(i+1)*b] for i in range(len(g) // b))
|
201 |
+
for _ in range(self.n_rand_batches):
|
202 |
+
rand_group = choices(self.groups, self.probs)[0]
|
203 |
+
batches.append(choices(rand_group, k=b))
|
204 |
+
|
205 |
+
shuffle(batches)
|
206 |
+
|
207 |
+
yield from batches
|
208 |
+
|
209 |
+
|
210 |
+
class PersonalizedDataLoader(DataLoader):
|
211 |
+
def __init__(self, dataset, latent_sampling_method="once", batch_size=1, pin_memory=False):
|
212 |
+
super(PersonalizedDataLoader, self).__init__(dataset, batch_sampler=GroupedBatchSampler(dataset, batch_size), pin_memory=pin_memory)
|
213 |
+
if latent_sampling_method == "random":
|
214 |
+
self.collate_fn = collate_wrapper_random
|
215 |
+
else:
|
216 |
+
self.collate_fn = collate_wrapper
|
217 |
+
|
218 |
+
|
219 |
+
class BatchLoader:
|
220 |
+
def __init__(self, data):
|
221 |
+
self.cond_text = [entry.cond_text for entry in data]
|
222 |
+
self.cond = [entry.cond for entry in data]
|
223 |
+
self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
|
224 |
+
if all(entry.weight is not None for entry in data):
|
225 |
+
self.weight = torch.stack([entry.weight for entry in data]).squeeze(1)
|
226 |
+
else:
|
227 |
+
self.weight = None
|
228 |
+
#self.emb_index = [entry.emb_index for entry in data]
|
229 |
+
#print(self.latent_sample.device)
|
230 |
+
|
231 |
+
def pin_memory(self):
|
232 |
+
self.latent_sample = self.latent_sample.pin_memory()
|
233 |
+
return self
|
234 |
+
|
235 |
+
def collate_wrapper(batch):
|
236 |
+
return BatchLoader(batch)
|
237 |
+
|
238 |
+
class BatchLoaderRandom(BatchLoader):
|
239 |
+
def __init__(self, data):
|
240 |
+
super().__init__(data)
|
241 |
+
|
242 |
+
def pin_memory(self):
|
243 |
+
return self
|
244 |
+
|
245 |
+
def collate_wrapper_random(batch):
|
246 |
+
return BatchLoaderRandom(batch)
|
modules/textual_inversion/image_embedding.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import json
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import zlib
|
7 |
+
from PIL import Image, ImageDraw
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
class EmbeddingEncoder(json.JSONEncoder):
|
12 |
+
def default(self, obj):
|
13 |
+
if isinstance(obj, torch.Tensor):
|
14 |
+
return {'TORCHTENSOR': obj.cpu().detach().numpy().tolist()}
|
15 |
+
return json.JSONEncoder.default(self, obj)
|
16 |
+
|
17 |
+
|
18 |
+
class EmbeddingDecoder(json.JSONDecoder):
|
19 |
+
def __init__(self, *args, **kwargs):
|
20 |
+
json.JSONDecoder.__init__(self, *args, object_hook=self.object_hook, **kwargs)
|
21 |
+
|
22 |
+
def object_hook(self, d):
|
23 |
+
if 'TORCHTENSOR' in d:
|
24 |
+
return torch.from_numpy(np.array(d['TORCHTENSOR']))
|
25 |
+
return d
|
26 |
+
|
27 |
+
|
28 |
+
def embedding_to_b64(data):
|
29 |
+
d = json.dumps(data, cls=EmbeddingEncoder)
|
30 |
+
return base64.b64encode(d.encode())
|
31 |
+
|
32 |
+
|
33 |
+
def embedding_from_b64(data):
|
34 |
+
d = base64.b64decode(data)
|
35 |
+
return json.loads(d, cls=EmbeddingDecoder)
|
36 |
+
|
37 |
+
|
38 |
+
def lcg(m=2**32, a=1664525, c=1013904223, seed=0):
|
39 |
+
while True:
|
40 |
+
seed = (a * seed + c) % m
|
41 |
+
yield seed % 255
|
42 |
+
|
43 |
+
|
44 |
+
def xor_block(block):
|
45 |
+
g = lcg()
|
46 |
+
randblock = np.array([next(g) for _ in range(np.product(block.shape))]).astype(np.uint8).reshape(block.shape)
|
47 |
+
return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F)
|
48 |
+
|
49 |
+
|
50 |
+
def style_block(block, sequence):
|
51 |
+
im = Image.new('RGB', (block.shape[1], block.shape[0]))
|
52 |
+
draw = ImageDraw.Draw(im)
|
53 |
+
i = 0
|
54 |
+
for x in range(-6, im.size[0], 8):
|
55 |
+
for yi, y in enumerate(range(-6, im.size[1], 8)):
|
56 |
+
offset = 0
|
57 |
+
if yi % 2 == 0:
|
58 |
+
offset = 4
|
59 |
+
shade = sequence[i % len(sequence)]
|
60 |
+
i += 1
|
61 |
+
draw.ellipse((x+offset, y, x+6+offset, y+6), fill=(shade, shade, shade))
|
62 |
+
|
63 |
+
fg = np.array(im).astype(np.uint8) & 0xF0
|
64 |
+
|
65 |
+
return block ^ fg
|
66 |
+
|
67 |
+
|
68 |
+
def insert_image_data_embed(image, data):
|
69 |
+
d = 3
|
70 |
+
data_compressed = zlib.compress(json.dumps(data, cls=EmbeddingEncoder).encode(), level=9)
|
71 |
+
data_np_ = np.frombuffer(data_compressed, np.uint8).copy()
|
72 |
+
data_np_high = data_np_ >> 4
|
73 |
+
data_np_low = data_np_ & 0x0F
|
74 |
+
|
75 |
+
h = image.size[1]
|
76 |
+
next_size = data_np_low.shape[0] + (h-(data_np_low.shape[0] % h))
|
77 |
+
next_size = next_size + ((h*d)-(next_size % (h*d)))
|
78 |
+
|
79 |
+
data_np_low = np.resize(data_np_low, next_size)
|
80 |
+
data_np_low = data_np_low.reshape((h, -1, d))
|
81 |
+
|
82 |
+
data_np_high = np.resize(data_np_high, next_size)
|
83 |
+
data_np_high = data_np_high.reshape((h, -1, d))
|
84 |
+
|
85 |
+
edge_style = list(data['string_to_param'].values())[0].cpu().detach().numpy().tolist()[0][:1024]
|
86 |
+
edge_style = (np.abs(edge_style)/np.max(np.abs(edge_style))*255).astype(np.uint8)
|
87 |
+
|
88 |
+
data_np_low = style_block(data_np_low, sequence=edge_style)
|
89 |
+
data_np_low = xor_block(data_np_low)
|
90 |
+
data_np_high = style_block(data_np_high, sequence=edge_style[::-1])
|
91 |
+
data_np_high = xor_block(data_np_high)
|
92 |
+
|
93 |
+
im_low = Image.fromarray(data_np_low, mode='RGB')
|
94 |
+
im_high = Image.fromarray(data_np_high, mode='RGB')
|
95 |
+
|
96 |
+
background = Image.new('RGB', (image.size[0]+im_low.size[0]+im_high.size[0]+2, image.size[1]), (0, 0, 0))
|
97 |
+
background.paste(im_low, (0, 0))
|
98 |
+
background.paste(image, (im_low.size[0]+1, 0))
|
99 |
+
background.paste(im_high, (im_low.size[0]+1+image.size[0]+1, 0))
|
100 |
+
|
101 |
+
return background
|
102 |
+
|
103 |
+
|
104 |
+
def crop_black(img, tol=0):
|
105 |
+
mask = (img > tol).all(2)
|
106 |
+
mask0, mask1 = mask.any(0), mask.any(1)
|
107 |
+
col_start, col_end = mask0.argmax(), mask.shape[1]-mask0[::-1].argmax()
|
108 |
+
row_start, row_end = mask1.argmax(), mask.shape[0]-mask1[::-1].argmax()
|
109 |
+
return img[row_start:row_end, col_start:col_end]
|
110 |
+
|
111 |
+
|
112 |
+
def extract_image_data_embed(image):
|
113 |
+
d = 3
|
114 |
+
outarr = crop_black(np.array(image.convert('RGB').getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8)) & 0x0F
|
115 |
+
black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0)
|
116 |
+
if black_cols[0].shape[0] < 2:
|
117 |
+
print('No Image data blocks found.')
|
118 |
+
return None
|
119 |
+
|
120 |
+
data_block_lower = outarr[:, :black_cols[0].min(), :].astype(np.uint8)
|
121 |
+
data_block_upper = outarr[:, black_cols[0].max()+1:, :].astype(np.uint8)
|
122 |
+
|
123 |
+
data_block_lower = xor_block(data_block_lower)
|
124 |
+
data_block_upper = xor_block(data_block_upper)
|
125 |
+
|
126 |
+
data_block = (data_block_upper << 4) | (data_block_lower)
|
127 |
+
data_block = data_block.flatten().tobytes()
|
128 |
+
|
129 |
+
data = zlib.decompress(data_block)
|
130 |
+
return json.loads(data, cls=EmbeddingDecoder)
|
131 |
+
|
132 |
+
|
133 |
+
def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, textfont=None):
|
134 |
+
from modules.images import get_font
|
135 |
+
if textfont:
|
136 |
+
warnings.warn(
|
137 |
+
'passing in a textfont to caption_image_overlay is deprecated and does nothing',
|
138 |
+
DeprecationWarning,
|
139 |
+
stacklevel=2,
|
140 |
+
)
|
141 |
+
from math import cos
|
142 |
+
|
143 |
+
image = srcimage.copy()
|
144 |
+
fontsize = 32
|
145 |
+
factor = 1.5
|
146 |
+
gradient = Image.new('RGBA', (1, image.size[1]), color=(0, 0, 0, 0))
|
147 |
+
for y in range(image.size[1]):
|
148 |
+
mag = 1-cos(y/image.size[1]*factor)
|
149 |
+
mag = max(mag, 1-cos((image.size[1]-y)/image.size[1]*factor*1.1))
|
150 |
+
gradient.putpixel((0, y), (0, 0, 0, int(mag*255)))
|
151 |
+
image = Image.alpha_composite(image.convert('RGBA'), gradient.resize(image.size))
|
152 |
+
|
153 |
+
draw = ImageDraw.Draw(image)
|
154 |
+
|
155 |
+
font = get_font(fontsize)
|
156 |
+
padding = 10
|
157 |
+
|
158 |
+
_, _, w, h = draw.textbbox((0, 0), title, font=font)
|
159 |
+
fontsize = min(int(fontsize * (((image.size[0]*0.75)-(padding*4))/w)), 72)
|
160 |
+
font = get_font(fontsize)
|
161 |
+
_, _, w, h = draw.textbbox((0, 0), title, font=font)
|
162 |
+
draw.text((padding, padding), title, anchor='lt', font=font, fill=(255, 255, 255, 230))
|
163 |
+
|
164 |
+
_, _, w, h = draw.textbbox((0, 0), footerLeft, font=font)
|
165 |
+
fontsize_left = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
|
166 |
+
_, _, w, h = draw.textbbox((0, 0), footerMid, font=font)
|
167 |
+
fontsize_mid = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
|
168 |
+
_, _, w, h = draw.textbbox((0, 0), footerRight, font=font)
|
169 |
+
fontsize_right = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
|
170 |
+
|
171 |
+
font = get_font(min(fontsize_left, fontsize_mid, fontsize_right))
|
172 |
+
|
173 |
+
draw.text((padding, image.size[1]-padding), footerLeft, anchor='ls', font=font, fill=(255, 255, 255, 230))
|
174 |
+
draw.text((image.size[0]/2, image.size[1]-padding), footerMid, anchor='ms', font=font, fill=(255, 255, 255, 230))
|
175 |
+
draw.text((image.size[0]-padding, image.size[1]-padding), footerRight, anchor='rs', font=font, fill=(255, 255, 255, 230))
|
176 |
+
|
177 |
+
return image
|
178 |
+
|
179 |
+
|
180 |
+
if __name__ == '__main__':
|
181 |
+
|
182 |
+
testEmbed = Image.open('test_embedding.png')
|
183 |
+
data = extract_image_data_embed(testEmbed)
|
184 |
+
assert data is not None
|
185 |
+
|
186 |
+
data = embedding_from_b64(testEmbed.text['sd-ti-embedding'])
|
187 |
+
assert data is not None
|
188 |
+
|
189 |
+
image = Image.new('RGBA', (512, 512), (255, 255, 200, 255))
|
190 |
+
cap_image = caption_image_overlay(image, 'title', 'footerLeft', 'footerMid', 'footerRight')
|
191 |
+
|
192 |
+
test_embed = {'string_to_param': {'*': torch.from_numpy(np.random.random((2, 4096)))}}
|
193 |
+
|
194 |
+
embedded_image = insert_image_data_embed(cap_image, test_embed)
|
195 |
+
|
196 |
+
retrived_embed = extract_image_data_embed(embedded_image)
|
197 |
+
|
198 |
+
assert str(retrived_embed) == str(test_embed)
|
199 |
+
|
200 |
+
embedded_image2 = insert_image_data_embed(cap_image, retrived_embed)
|
201 |
+
|
202 |
+
assert embedded_image == embedded_image2
|
203 |
+
|
204 |
+
g = lcg()
|
205 |
+
shared_random = np.array([next(g) for _ in range(100)]).astype(np.uint8).tolist()
|
206 |
+
|
207 |
+
reference_random = [253, 242, 127, 44, 157, 27, 239, 133, 38, 79, 167, 4, 177,
|
208 |
+
95, 130, 79, 78, 14, 52, 215, 220, 194, 126, 28, 240, 179,
|
209 |
+
160, 153, 149, 50, 105, 14, 21, 218, 199, 18, 54, 198, 193,
|
210 |
+
38, 128, 19, 53, 195, 124, 75, 205, 12, 6, 145, 0, 28,
|
211 |
+
30, 148, 8, 45, 218, 171, 55, 249, 97, 166, 12, 35, 0,
|
212 |
+
41, 221, 122, 215, 170, 31, 113, 186, 97, 119, 31, 23, 185,
|
213 |
+
66, 140, 30, 41, 37, 63, 137, 109, 216, 55, 159, 145, 82,
|
214 |
+
204, 86, 73, 222, 44, 198, 118, 240, 97]
|
215 |
+
|
216 |
+
assert shared_random == reference_random
|
217 |
+
|
218 |
+
hunna_kay_random_sum = sum(np.array([next(g) for _ in range(100000)]).astype(np.uint8).tolist())
|
219 |
+
|
220 |
+
assert 12731374 == hunna_kay_random_sum
|
modules/textual_inversion/learn_schedule.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tqdm
|
2 |
+
|
3 |
+
|
4 |
+
class LearnScheduleIterator:
|
5 |
+
def __init__(self, learn_rate, max_steps, cur_step=0):
|
6 |
+
"""
|
7 |
+
specify learn_rate as "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000
|
8 |
+
"""
|
9 |
+
|
10 |
+
pairs = learn_rate.split(',')
|
11 |
+
self.rates = []
|
12 |
+
self.it = 0
|
13 |
+
self.maxit = 0
|
14 |
+
try:
|
15 |
+
for pair in pairs:
|
16 |
+
if not pair.strip():
|
17 |
+
continue
|
18 |
+
tmp = pair.split(':')
|
19 |
+
if len(tmp) == 2:
|
20 |
+
step = int(tmp[1])
|
21 |
+
if step > cur_step:
|
22 |
+
self.rates.append((float(tmp[0]), min(step, max_steps)))
|
23 |
+
self.maxit += 1
|
24 |
+
if step > max_steps:
|
25 |
+
return
|
26 |
+
elif step == -1:
|
27 |
+
self.rates.append((float(tmp[0]), max_steps))
|
28 |
+
self.maxit += 1
|
29 |
+
return
|
30 |
+
else:
|
31 |
+
self.rates.append((float(tmp[0]), max_steps))
|
32 |
+
self.maxit += 1
|
33 |
+
return
|
34 |
+
assert self.rates
|
35 |
+
except (ValueError, AssertionError) as e:
|
36 |
+
raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.') from e
|
37 |
+
|
38 |
+
|
39 |
+
def __iter__(self):
|
40 |
+
return self
|
41 |
+
|
42 |
+
def __next__(self):
|
43 |
+
if self.it < self.maxit:
|
44 |
+
self.it += 1
|
45 |
+
return self.rates[self.it - 1]
|
46 |
+
else:
|
47 |
+
raise StopIteration
|
48 |
+
|
49 |
+
|
50 |
+
class LearnRateScheduler:
|
51 |
+
def __init__(self, learn_rate, max_steps, cur_step=0, verbose=True):
|
52 |
+
self.schedules = LearnScheduleIterator(learn_rate, max_steps, cur_step)
|
53 |
+
(self.learn_rate, self.end_step) = next(self.schedules)
|
54 |
+
self.verbose = verbose
|
55 |
+
|
56 |
+
if self.verbose:
|
57 |
+
print(f'Training at rate of {self.learn_rate} until step {self.end_step}')
|
58 |
+
|
59 |
+
self.finished = False
|
60 |
+
|
61 |
+
def step(self, step_number):
|
62 |
+
if step_number < self.end_step:
|
63 |
+
return False
|
64 |
+
|
65 |
+
try:
|
66 |
+
(self.learn_rate, self.end_step) = next(self.schedules)
|
67 |
+
except StopIteration:
|
68 |
+
self.finished = True
|
69 |
+
return False
|
70 |
+
return True
|
71 |
+
|
72 |
+
def apply(self, optimizer, step_number):
|
73 |
+
if not self.step(step_number):
|
74 |
+
return
|
75 |
+
|
76 |
+
if self.verbose:
|
77 |
+
tqdm.tqdm.write(f'Training at rate of {self.learn_rate} until step {self.end_step}')
|
78 |
+
|
79 |
+
for pg in optimizer.param_groups:
|
80 |
+
pg['lr'] = self.learn_rate
|
81 |
+
|
modules/textual_inversion/logging.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
saved_params_shared = {
|
6 |
+
"batch_size",
|
7 |
+
"clip_grad_mode",
|
8 |
+
"clip_grad_value",
|
9 |
+
"create_image_every",
|
10 |
+
"data_root",
|
11 |
+
"gradient_step",
|
12 |
+
"initial_step",
|
13 |
+
"latent_sampling_method",
|
14 |
+
"learn_rate",
|
15 |
+
"log_directory",
|
16 |
+
"model_hash",
|
17 |
+
"model_name",
|
18 |
+
"num_of_dataset_images",
|
19 |
+
"steps",
|
20 |
+
"template_file",
|
21 |
+
"training_height",
|
22 |
+
"training_width",
|
23 |
+
}
|
24 |
+
saved_params_ti = {
|
25 |
+
"embedding_name",
|
26 |
+
"num_vectors_per_token",
|
27 |
+
"save_embedding_every",
|
28 |
+
"save_image_with_stored_embedding",
|
29 |
+
}
|
30 |
+
saved_params_hypernet = {
|
31 |
+
"activation_func",
|
32 |
+
"add_layer_norm",
|
33 |
+
"hypernetwork_name",
|
34 |
+
"layer_structure",
|
35 |
+
"save_hypernetwork_every",
|
36 |
+
"use_dropout",
|
37 |
+
"weight_init",
|
38 |
+
}
|
39 |
+
saved_params_all = saved_params_shared | saved_params_ti | saved_params_hypernet
|
40 |
+
saved_params_previews = {
|
41 |
+
"preview_cfg_scale",
|
42 |
+
"preview_height",
|
43 |
+
"preview_negative_prompt",
|
44 |
+
"preview_prompt",
|
45 |
+
"preview_sampler_index",
|
46 |
+
"preview_seed",
|
47 |
+
"preview_steps",
|
48 |
+
"preview_width",
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
def save_settings_to_file(log_directory, all_params):
|
53 |
+
now = datetime.datetime.now()
|
54 |
+
params = {"datetime": now.strftime("%Y-%m-%d %H:%M:%S")}
|
55 |
+
|
56 |
+
keys = saved_params_all
|
57 |
+
if all_params.get('preview_from_txt2img'):
|
58 |
+
keys = keys | saved_params_previews
|
59 |
+
|
60 |
+
params.update({k: v for k, v in all_params.items() if k in keys})
|
61 |
+
|
62 |
+
filename = f'settings-{now.strftime("%Y-%m-%d-%H-%M-%S")}.json'
|
63 |
+
with open(os.path.join(log_directory, filename), "w") as file:
|
64 |
+
json.dump(params, file, indent=4)
|
modules/textual_inversion/test_embedding.png
ADDED
Git LFS Details
|
modules/textual_inversion/textual_inversion.py
ADDED
@@ -0,0 +1,700 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from collections import namedtuple
|
3 |
+
from contextlib import closing
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import tqdm
|
7 |
+
import html
|
8 |
+
import datetime
|
9 |
+
import csv
|
10 |
+
import safetensors.torch
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image, PngImagePlugin
|
14 |
+
from torch.utils.tensorboard import SummaryWriter
|
15 |
+
|
16 |
+
from modules import shared, devices, sd_hijack, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes
|
17 |
+
import modules.textual_inversion.dataset
|
18 |
+
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
19 |
+
|
20 |
+
from modules.textual_inversion.image_embedding import embedding_to_b64, embedding_from_b64, insert_image_data_embed, extract_image_data_embed, caption_image_overlay
|
21 |
+
from modules.textual_inversion.logging import save_settings_to_file
|
22 |
+
|
23 |
+
|
24 |
+
TextualInversionTemplate = namedtuple("TextualInversionTemplate", ["name", "path"])
|
25 |
+
textual_inversion_templates = {}
|
26 |
+
|
27 |
+
|
28 |
+
def list_textual_inversion_templates():
|
29 |
+
textual_inversion_templates.clear()
|
30 |
+
|
31 |
+
for root, _, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir):
|
32 |
+
for fn in fns:
|
33 |
+
path = os.path.join(root, fn)
|
34 |
+
|
35 |
+
textual_inversion_templates[fn] = TextualInversionTemplate(fn, path)
|
36 |
+
|
37 |
+
return textual_inversion_templates
|
38 |
+
|
39 |
+
|
40 |
+
class Embedding:
|
41 |
+
def __init__(self, vec, name, step=None):
|
42 |
+
self.vec = vec
|
43 |
+
self.name = name
|
44 |
+
self.step = step
|
45 |
+
self.shape = None
|
46 |
+
self.vectors = 0
|
47 |
+
self.cached_checksum = None
|
48 |
+
self.sd_checkpoint = None
|
49 |
+
self.sd_checkpoint_name = None
|
50 |
+
self.optimizer_state_dict = None
|
51 |
+
self.filename = None
|
52 |
+
self.hash = None
|
53 |
+
self.shorthash = None
|
54 |
+
|
55 |
+
def save(self, filename):
|
56 |
+
embedding_data = {
|
57 |
+
"string_to_token": {"*": 265},
|
58 |
+
"string_to_param": {"*": self.vec},
|
59 |
+
"name": self.name,
|
60 |
+
"step": self.step,
|
61 |
+
"sd_checkpoint": self.sd_checkpoint,
|
62 |
+
"sd_checkpoint_name": self.sd_checkpoint_name,
|
63 |
+
}
|
64 |
+
|
65 |
+
torch.save(embedding_data, filename)
|
66 |
+
|
67 |
+
if shared.opts.save_optimizer_state and self.optimizer_state_dict is not None:
|
68 |
+
optimizer_saved_dict = {
|
69 |
+
'hash': self.checksum(),
|
70 |
+
'optimizer_state_dict': self.optimizer_state_dict,
|
71 |
+
}
|
72 |
+
torch.save(optimizer_saved_dict, f"{filename}.optim")
|
73 |
+
|
74 |
+
def checksum(self):
|
75 |
+
if self.cached_checksum is not None:
|
76 |
+
return self.cached_checksum
|
77 |
+
|
78 |
+
def const_hash(a):
|
79 |
+
r = 0
|
80 |
+
for v in a:
|
81 |
+
r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF
|
82 |
+
return r
|
83 |
+
|
84 |
+
self.cached_checksum = f'{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}'
|
85 |
+
return self.cached_checksum
|
86 |
+
|
87 |
+
def set_hash(self, v):
|
88 |
+
self.hash = v
|
89 |
+
self.shorthash = self.hash[0:12]
|
90 |
+
|
91 |
+
|
92 |
+
class DirWithTextualInversionEmbeddings:
|
93 |
+
def __init__(self, path):
|
94 |
+
self.path = path
|
95 |
+
self.mtime = None
|
96 |
+
|
97 |
+
def has_changed(self):
|
98 |
+
if not os.path.isdir(self.path):
|
99 |
+
return False
|
100 |
+
|
101 |
+
mt = os.path.getmtime(self.path)
|
102 |
+
if self.mtime is None or mt > self.mtime:
|
103 |
+
return True
|
104 |
+
|
105 |
+
def update(self):
|
106 |
+
if not os.path.isdir(self.path):
|
107 |
+
return
|
108 |
+
|
109 |
+
self.mtime = os.path.getmtime(self.path)
|
110 |
+
|
111 |
+
|
112 |
+
class EmbeddingDatabase:
|
113 |
+
def __init__(self):
|
114 |
+
self.ids_lookup = {}
|
115 |
+
self.word_embeddings = {}
|
116 |
+
self.skipped_embeddings = {}
|
117 |
+
self.expected_shape = -1
|
118 |
+
self.embedding_dirs = {}
|
119 |
+
self.previously_displayed_embeddings = ()
|
120 |
+
|
121 |
+
def add_embedding_dir(self, path):
|
122 |
+
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
|
123 |
+
|
124 |
+
def clear_embedding_dirs(self):
|
125 |
+
self.embedding_dirs.clear()
|
126 |
+
|
127 |
+
def register_embedding(self, embedding, model):
|
128 |
+
return self.register_embedding_by_name(embedding, model, embedding.name)
|
129 |
+
|
130 |
+
def register_embedding_by_name(self, embedding, model, name):
|
131 |
+
ids = model.cond_stage_model.tokenize([name])[0]
|
132 |
+
first_id = ids[0]
|
133 |
+
if first_id not in self.ids_lookup:
|
134 |
+
self.ids_lookup[first_id] = []
|
135 |
+
if name in self.word_embeddings:
|
136 |
+
# remove old one from the lookup list
|
137 |
+
lookup = [x for x in self.ids_lookup[first_id] if x[1].name!=name]
|
138 |
+
else:
|
139 |
+
lookup = self.ids_lookup[first_id]
|
140 |
+
if embedding is not None:
|
141 |
+
lookup += [(ids, embedding)]
|
142 |
+
self.ids_lookup[first_id] = sorted(lookup, key=lambda x: len(x[0]), reverse=True)
|
143 |
+
if embedding is None:
|
144 |
+
# unregister embedding with specified name
|
145 |
+
if name in self.word_embeddings:
|
146 |
+
del self.word_embeddings[name]
|
147 |
+
if len(self.ids_lookup[first_id])==0:
|
148 |
+
del self.ids_lookup[first_id]
|
149 |
+
return None
|
150 |
+
self.word_embeddings[name] = embedding
|
151 |
+
return embedding
|
152 |
+
|
153 |
+
def get_expected_shape(self):
|
154 |
+
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
|
155 |
+
return vec.shape[1]
|
156 |
+
|
157 |
+
def load_from_file(self, path, filename):
|
158 |
+
name, ext = os.path.splitext(filename)
|
159 |
+
ext = ext.upper()
|
160 |
+
|
161 |
+
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
|
162 |
+
_, second_ext = os.path.splitext(name)
|
163 |
+
if second_ext.upper() == '.PREVIEW':
|
164 |
+
return
|
165 |
+
|
166 |
+
embed_image = Image.open(path)
|
167 |
+
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
|
168 |
+
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
|
169 |
+
name = data.get('name', name)
|
170 |
+
else:
|
171 |
+
data = extract_image_data_embed(embed_image)
|
172 |
+
if data:
|
173 |
+
name = data.get('name', name)
|
174 |
+
else:
|
175 |
+
# if data is None, means this is not an embeding, just a preview image
|
176 |
+
return
|
177 |
+
elif ext in ['.BIN', '.PT']:
|
178 |
+
data = torch.load(path, map_location="cpu")
|
179 |
+
elif ext in ['.SAFETENSORS']:
|
180 |
+
data = safetensors.torch.load_file(path, device="cpu")
|
181 |
+
else:
|
182 |
+
return
|
183 |
+
|
184 |
+
embedding = create_embedding_from_data(data, name, filename=filename, filepath=path)
|
185 |
+
|
186 |
+
if self.expected_shape == -1 or self.expected_shape == embedding.shape:
|
187 |
+
self.register_embedding(embedding, shared.sd_model)
|
188 |
+
else:
|
189 |
+
self.skipped_embeddings[name] = embedding
|
190 |
+
|
191 |
+
def load_from_dir(self, embdir):
|
192 |
+
if not os.path.isdir(embdir.path):
|
193 |
+
return
|
194 |
+
|
195 |
+
for root, _, fns in os.walk(embdir.path, followlinks=True):
|
196 |
+
for fn in fns:
|
197 |
+
try:
|
198 |
+
fullfn = os.path.join(root, fn)
|
199 |
+
|
200 |
+
if os.stat(fullfn).st_size == 0:
|
201 |
+
continue
|
202 |
+
|
203 |
+
self.load_from_file(fullfn, fn)
|
204 |
+
except Exception:
|
205 |
+
errors.report(f"Error loading embedding {fn}", exc_info=True)
|
206 |
+
continue
|
207 |
+
|
208 |
+
def load_textual_inversion_embeddings(self, force_reload=False):
|
209 |
+
if not force_reload:
|
210 |
+
need_reload = False
|
211 |
+
for embdir in self.embedding_dirs.values():
|
212 |
+
if embdir.has_changed():
|
213 |
+
need_reload = True
|
214 |
+
break
|
215 |
+
|
216 |
+
if not need_reload:
|
217 |
+
return
|
218 |
+
|
219 |
+
self.ids_lookup.clear()
|
220 |
+
self.word_embeddings.clear()
|
221 |
+
self.skipped_embeddings.clear()
|
222 |
+
self.expected_shape = self.get_expected_shape()
|
223 |
+
|
224 |
+
for embdir in self.embedding_dirs.values():
|
225 |
+
self.load_from_dir(embdir)
|
226 |
+
embdir.update()
|
227 |
+
|
228 |
+
# re-sort word_embeddings because load_from_dir may not load in alphabetic order.
|
229 |
+
# using a temporary copy so we don't reinitialize self.word_embeddings in case other objects have a reference to it.
|
230 |
+
sorted_word_embeddings = {e.name: e for e in sorted(self.word_embeddings.values(), key=lambda e: e.name.lower())}
|
231 |
+
self.word_embeddings.clear()
|
232 |
+
self.word_embeddings.update(sorted_word_embeddings)
|
233 |
+
|
234 |
+
displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys()))
|
235 |
+
if shared.opts.textual_inversion_print_at_load and self.previously_displayed_embeddings != displayed_embeddings:
|
236 |
+
self.previously_displayed_embeddings = displayed_embeddings
|
237 |
+
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
|
238 |
+
if self.skipped_embeddings:
|
239 |
+
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
|
240 |
+
|
241 |
+
def find_embedding_at_position(self, tokens, offset):
|
242 |
+
token = tokens[offset]
|
243 |
+
possible_matches = self.ids_lookup.get(token, None)
|
244 |
+
|
245 |
+
if possible_matches is None:
|
246 |
+
return None, None
|
247 |
+
|
248 |
+
for ids, embedding in possible_matches:
|
249 |
+
if tokens[offset:offset + len(ids)] == ids:
|
250 |
+
return embedding, len(ids)
|
251 |
+
|
252 |
+
return None, None
|
253 |
+
|
254 |
+
|
255 |
+
def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'):
|
256 |
+
cond_model = shared.sd_model.cond_stage_model
|
257 |
+
|
258 |
+
with devices.autocast():
|
259 |
+
cond_model([""]) # will send cond model to GPU if lowvram/medvram is active
|
260 |
+
|
261 |
+
#cond_model expects at least some text, so we provide '*' as backup.
|
262 |
+
embedded = cond_model.encode_embedding_init_text(init_text or '*', num_vectors_per_token)
|
263 |
+
vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device)
|
264 |
+
|
265 |
+
#Only copy if we provided an init_text, otherwise keep vectors as zeros
|
266 |
+
if init_text:
|
267 |
+
for i in range(num_vectors_per_token):
|
268 |
+
vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token]
|
269 |
+
|
270 |
+
# Remove illegal characters from name.
|
271 |
+
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
|
272 |
+
fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt")
|
273 |
+
if not overwrite_old:
|
274 |
+
assert not os.path.exists(fn), f"file {fn} already exists"
|
275 |
+
|
276 |
+
embedding = Embedding(vec, name)
|
277 |
+
embedding.step = 0
|
278 |
+
embedding.save(fn)
|
279 |
+
|
280 |
+
return fn
|
281 |
+
|
282 |
+
|
283 |
+
def create_embedding_from_data(data, name, filename='unknown embedding file', filepath=None):
|
284 |
+
if 'string_to_param' in data: # textual inversion embeddings
|
285 |
+
param_dict = data['string_to_param']
|
286 |
+
param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11
|
287 |
+
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
|
288 |
+
emb = next(iter(param_dict.items()))[1]
|
289 |
+
vec = emb.detach().to(devices.device, dtype=torch.float32)
|
290 |
+
shape = vec.shape[-1]
|
291 |
+
vectors = vec.shape[0]
|
292 |
+
elif type(data) == dict and 'clip_g' in data and 'clip_l' in data: # SDXL embedding
|
293 |
+
vec = {k: v.detach().to(devices.device, dtype=torch.float32) for k, v in data.items()}
|
294 |
+
shape = data['clip_g'].shape[-1] + data['clip_l'].shape[-1]
|
295 |
+
vectors = data['clip_g'].shape[0]
|
296 |
+
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: # diffuser concepts
|
297 |
+
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
|
298 |
+
|
299 |
+
emb = next(iter(data.values()))
|
300 |
+
if len(emb.shape) == 1:
|
301 |
+
emb = emb.unsqueeze(0)
|
302 |
+
vec = emb.detach().to(devices.device, dtype=torch.float32)
|
303 |
+
shape = vec.shape[-1]
|
304 |
+
vectors = vec.shape[0]
|
305 |
+
else:
|
306 |
+
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
|
307 |
+
|
308 |
+
embedding = Embedding(vec, name)
|
309 |
+
embedding.step = data.get('step', None)
|
310 |
+
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
|
311 |
+
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
|
312 |
+
embedding.vectors = vectors
|
313 |
+
embedding.shape = shape
|
314 |
+
|
315 |
+
if filepath:
|
316 |
+
embedding.filename = filepath
|
317 |
+
embedding.set_hash(hashes.sha256(filepath, "textual_inversion/" + name) or '')
|
318 |
+
|
319 |
+
return embedding
|
320 |
+
|
321 |
+
|
322 |
+
def write_loss(log_directory, filename, step, epoch_len, values):
|
323 |
+
if shared.opts.training_write_csv_every == 0:
|
324 |
+
return
|
325 |
+
|
326 |
+
if step % shared.opts.training_write_csv_every != 0:
|
327 |
+
return
|
328 |
+
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
|
329 |
+
|
330 |
+
with open(os.path.join(log_directory, filename), "a+", newline='') as fout:
|
331 |
+
csv_writer = csv.DictWriter(fout, fieldnames=["step", "epoch", "epoch_step", *(values.keys())])
|
332 |
+
|
333 |
+
if write_csv_header:
|
334 |
+
csv_writer.writeheader()
|
335 |
+
|
336 |
+
epoch = (step - 1) // epoch_len
|
337 |
+
epoch_step = (step - 1) % epoch_len
|
338 |
+
|
339 |
+
csv_writer.writerow({
|
340 |
+
"step": step,
|
341 |
+
"epoch": epoch,
|
342 |
+
"epoch_step": epoch_step,
|
343 |
+
**values,
|
344 |
+
})
|
345 |
+
|
346 |
+
def tensorboard_setup(log_directory):
|
347 |
+
os.makedirs(os.path.join(log_directory, "tensorboard"), exist_ok=True)
|
348 |
+
return SummaryWriter(
|
349 |
+
log_dir=os.path.join(log_directory, "tensorboard"),
|
350 |
+
flush_secs=shared.opts.training_tensorboard_flush_every)
|
351 |
+
|
352 |
+
def tensorboard_add(tensorboard_writer, loss, global_step, step, learn_rate, epoch_num):
|
353 |
+
tensorboard_add_scaler(tensorboard_writer, "Loss/train", loss, global_step)
|
354 |
+
tensorboard_add_scaler(tensorboard_writer, f"Loss/train/epoch-{epoch_num}", loss, step)
|
355 |
+
tensorboard_add_scaler(tensorboard_writer, "Learn rate/train", learn_rate, global_step)
|
356 |
+
tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", learn_rate, step)
|
357 |
+
|
358 |
+
def tensorboard_add_scaler(tensorboard_writer, tag, value, step):
|
359 |
+
tensorboard_writer.add_scalar(tag=tag,
|
360 |
+
scalar_value=value, global_step=step)
|
361 |
+
|
362 |
+
def tensorboard_add_image(tensorboard_writer, tag, pil_image, step):
|
363 |
+
# Convert a pil image to a torch tensor
|
364 |
+
img_tensor = torch.as_tensor(np.array(pil_image, copy=True))
|
365 |
+
img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0],
|
366 |
+
len(pil_image.getbands()))
|
367 |
+
img_tensor = img_tensor.permute((2, 0, 1))
|
368 |
+
|
369 |
+
tensorboard_writer.add_image(tag, img_tensor, global_step=step)
|
370 |
+
|
371 |
+
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_model_every, create_image_every, log_directory, name="embedding"):
|
372 |
+
assert model_name, f"{name} not selected"
|
373 |
+
assert learn_rate, "Learning rate is empty or 0"
|
374 |
+
assert isinstance(batch_size, int), "Batch size must be integer"
|
375 |
+
assert batch_size > 0, "Batch size must be positive"
|
376 |
+
assert isinstance(gradient_step, int), "Gradient accumulation step must be integer"
|
377 |
+
assert gradient_step > 0, "Gradient accumulation step must be positive"
|
378 |
+
assert data_root, "Dataset directory is empty"
|
379 |
+
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
|
380 |
+
assert os.listdir(data_root), "Dataset directory is empty"
|
381 |
+
assert template_filename, "Prompt template file not selected"
|
382 |
+
assert template_file, f"Prompt template file {template_filename} not found"
|
383 |
+
assert os.path.isfile(template_file.path), f"Prompt template file {template_filename} doesn't exist"
|
384 |
+
assert steps, "Max steps is empty or 0"
|
385 |
+
assert isinstance(steps, int), "Max steps must be integer"
|
386 |
+
assert steps > 0, "Max steps must be positive"
|
387 |
+
assert isinstance(save_model_every, int), "Save {name} must be integer"
|
388 |
+
assert save_model_every >= 0, "Save {name} must be positive or 0"
|
389 |
+
assert isinstance(create_image_every, int), "Create image must be integer"
|
390 |
+
assert create_image_every >= 0, "Create image must be positive or 0"
|
391 |
+
if save_model_every or create_image_every:
|
392 |
+
assert log_directory, "Log directory is empty"
|
393 |
+
|
394 |
+
|
395 |
+
def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_name, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
396 |
+
from modules import processing
|
397 |
+
|
398 |
+
save_embedding_every = save_embedding_every or 0
|
399 |
+
create_image_every = create_image_every or 0
|
400 |
+
template_file = textual_inversion_templates.get(template_filename, None)
|
401 |
+
validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
|
402 |
+
template_file = template_file.path
|
403 |
+
|
404 |
+
shared.state.job = "train-embedding"
|
405 |
+
shared.state.textinfo = "Initializing textual inversion training..."
|
406 |
+
shared.state.job_count = steps
|
407 |
+
|
408 |
+
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
|
409 |
+
|
410 |
+
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), embedding_name)
|
411 |
+
unload = shared.opts.unload_models_when_training
|
412 |
+
|
413 |
+
if save_embedding_every > 0:
|
414 |
+
embedding_dir = os.path.join(log_directory, "embeddings")
|
415 |
+
os.makedirs(embedding_dir, exist_ok=True)
|
416 |
+
else:
|
417 |
+
embedding_dir = None
|
418 |
+
|
419 |
+
if create_image_every > 0:
|
420 |
+
images_dir = os.path.join(log_directory, "images")
|
421 |
+
os.makedirs(images_dir, exist_ok=True)
|
422 |
+
else:
|
423 |
+
images_dir = None
|
424 |
+
|
425 |
+
if create_image_every > 0 and save_image_with_stored_embedding:
|
426 |
+
images_embeds_dir = os.path.join(log_directory, "image_embeddings")
|
427 |
+
os.makedirs(images_embeds_dir, exist_ok=True)
|
428 |
+
else:
|
429 |
+
images_embeds_dir = None
|
430 |
+
|
431 |
+
hijack = sd_hijack.model_hijack
|
432 |
+
|
433 |
+
embedding = hijack.embedding_db.word_embeddings[embedding_name]
|
434 |
+
checkpoint = sd_models.select_checkpoint()
|
435 |
+
|
436 |
+
initial_step = embedding.step or 0
|
437 |
+
if initial_step >= steps:
|
438 |
+
shared.state.textinfo = "Model has already been trained beyond specified max steps"
|
439 |
+
return embedding, filename
|
440 |
+
|
441 |
+
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
|
442 |
+
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \
|
443 |
+
torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \
|
444 |
+
None
|
445 |
+
if clip_grad:
|
446 |
+
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
|
447 |
+
# dataset loading may take a while, so input validations and early returns should be done before this
|
448 |
+
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
449 |
+
old_parallel_processing_allowed = shared.parallel_processing_allowed
|
450 |
+
|
451 |
+
if shared.opts.training_enable_tensorboard:
|
452 |
+
tensorboard_writer = tensorboard_setup(log_directory)
|
453 |
+
|
454 |
+
pin_memory = shared.opts.pin_memory
|
455 |
+
|
456 |
+
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight)
|
457 |
+
|
458 |
+
if shared.opts.save_training_settings_to_txt:
|
459 |
+
save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
|
460 |
+
|
461 |
+
latent_sampling_method = ds.latent_sampling_method
|
462 |
+
|
463 |
+
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
|
464 |
+
|
465 |
+
if unload:
|
466 |
+
shared.parallel_processing_allowed = False
|
467 |
+
shared.sd_model.first_stage_model.to(devices.cpu)
|
468 |
+
|
469 |
+
embedding.vec.requires_grad = True
|
470 |
+
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
|
471 |
+
if shared.opts.save_optimizer_state:
|
472 |
+
optimizer_state_dict = None
|
473 |
+
if os.path.exists(f"{filename}.optim"):
|
474 |
+
optimizer_saved_dict = torch.load(f"{filename}.optim", map_location='cpu')
|
475 |
+
if embedding.checksum() == optimizer_saved_dict.get('hash', None):
|
476 |
+
optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
|
477 |
+
|
478 |
+
if optimizer_state_dict is not None:
|
479 |
+
optimizer.load_state_dict(optimizer_state_dict)
|
480 |
+
print("Loaded existing optimizer from checkpoint")
|
481 |
+
else:
|
482 |
+
print("No saved optimizer exists in checkpoint")
|
483 |
+
|
484 |
+
scaler = torch.cuda.amp.GradScaler()
|
485 |
+
|
486 |
+
batch_size = ds.batch_size
|
487 |
+
gradient_step = ds.gradient_step
|
488 |
+
# n steps = batch_size * gradient_step * n image processed
|
489 |
+
steps_per_epoch = len(ds) // batch_size // gradient_step
|
490 |
+
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
|
491 |
+
loss_step = 0
|
492 |
+
_loss_step = 0 #internal
|
493 |
+
|
494 |
+
last_saved_file = "<none>"
|
495 |
+
last_saved_image = "<none>"
|
496 |
+
forced_filename = "<none>"
|
497 |
+
embedding_yet_to_be_embedded = False
|
498 |
+
|
499 |
+
is_training_inpainting_model = shared.sd_model.model.conditioning_key in {'hybrid', 'concat'}
|
500 |
+
img_c = None
|
501 |
+
|
502 |
+
pbar = tqdm.tqdm(total=steps - initial_step)
|
503 |
+
try:
|
504 |
+
sd_hijack_checkpoint.add()
|
505 |
+
|
506 |
+
for _ in range((steps-initial_step) * gradient_step):
|
507 |
+
if scheduler.finished:
|
508 |
+
break
|
509 |
+
if shared.state.interrupted:
|
510 |
+
break
|
511 |
+
for j, batch in enumerate(dl):
|
512 |
+
# works as a drop_last=True for gradient accumulation
|
513 |
+
if j == max_steps_per_epoch:
|
514 |
+
break
|
515 |
+
scheduler.apply(optimizer, embedding.step)
|
516 |
+
if scheduler.finished:
|
517 |
+
break
|
518 |
+
if shared.state.interrupted:
|
519 |
+
break
|
520 |
+
|
521 |
+
if clip_grad:
|
522 |
+
clip_grad_sched.step(embedding.step)
|
523 |
+
|
524 |
+
with devices.autocast():
|
525 |
+
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
526 |
+
if use_weight:
|
527 |
+
w = batch.weight.to(devices.device, non_blocking=pin_memory)
|
528 |
+
c = shared.sd_model.cond_stage_model(batch.cond_text)
|
529 |
+
|
530 |
+
if is_training_inpainting_model:
|
531 |
+
if img_c is None:
|
532 |
+
img_c = processing.txt2img_image_conditioning(shared.sd_model, c, training_width, training_height)
|
533 |
+
|
534 |
+
cond = {"c_concat": [img_c], "c_crossattn": [c]}
|
535 |
+
else:
|
536 |
+
cond = c
|
537 |
+
|
538 |
+
if use_weight:
|
539 |
+
loss = shared.sd_model.weighted_forward(x, cond, w)[0] / gradient_step
|
540 |
+
del w
|
541 |
+
else:
|
542 |
+
loss = shared.sd_model.forward(x, cond)[0] / gradient_step
|
543 |
+
del x
|
544 |
+
|
545 |
+
_loss_step += loss.item()
|
546 |
+
scaler.scale(loss).backward()
|
547 |
+
|
548 |
+
# go back until we reach gradient accumulation steps
|
549 |
+
if (j + 1) % gradient_step != 0:
|
550 |
+
continue
|
551 |
+
|
552 |
+
if clip_grad:
|
553 |
+
clip_grad(embedding.vec, clip_grad_sched.learn_rate)
|
554 |
+
|
555 |
+
scaler.step(optimizer)
|
556 |
+
scaler.update()
|
557 |
+
embedding.step += 1
|
558 |
+
pbar.update()
|
559 |
+
optimizer.zero_grad(set_to_none=True)
|
560 |
+
loss_step = _loss_step
|
561 |
+
_loss_step = 0
|
562 |
+
|
563 |
+
steps_done = embedding.step + 1
|
564 |
+
|
565 |
+
epoch_num = embedding.step // steps_per_epoch
|
566 |
+
epoch_step = embedding.step % steps_per_epoch
|
567 |
+
|
568 |
+
description = f"Training textual inversion [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}] loss: {loss_step:.7f}"
|
569 |
+
pbar.set_description(description)
|
570 |
+
if embedding_dir is not None and steps_done % save_embedding_every == 0:
|
571 |
+
# Before saving, change name to match current checkpoint.
|
572 |
+
embedding_name_every = f'{embedding_name}-{steps_done}'
|
573 |
+
last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
|
574 |
+
save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
|
575 |
+
embedding_yet_to_be_embedded = True
|
576 |
+
|
577 |
+
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
|
578 |
+
"loss": f"{loss_step:.7f}",
|
579 |
+
"learn_rate": scheduler.learn_rate
|
580 |
+
})
|
581 |
+
|
582 |
+
if images_dir is not None and steps_done % create_image_every == 0:
|
583 |
+
forced_filename = f'{embedding_name}-{steps_done}'
|
584 |
+
last_saved_image = os.path.join(images_dir, forced_filename)
|
585 |
+
|
586 |
+
shared.sd_model.first_stage_model.to(devices.device)
|
587 |
+
|
588 |
+
p = processing.StableDiffusionProcessingTxt2Img(
|
589 |
+
sd_model=shared.sd_model,
|
590 |
+
do_not_save_grid=True,
|
591 |
+
do_not_save_samples=True,
|
592 |
+
do_not_reload_embeddings=True,
|
593 |
+
)
|
594 |
+
|
595 |
+
if preview_from_txt2img:
|
596 |
+
p.prompt = preview_prompt
|
597 |
+
p.negative_prompt = preview_negative_prompt
|
598 |
+
p.steps = preview_steps
|
599 |
+
p.sampler_name = sd_samplers.samplers_map[preview_sampler_name.lower()]
|
600 |
+
p.cfg_scale = preview_cfg_scale
|
601 |
+
p.seed = preview_seed
|
602 |
+
p.width = preview_width
|
603 |
+
p.height = preview_height
|
604 |
+
else:
|
605 |
+
p.prompt = batch.cond_text[0]
|
606 |
+
p.steps = 20
|
607 |
+
p.width = training_width
|
608 |
+
p.height = training_height
|
609 |
+
|
610 |
+
preview_text = p.prompt
|
611 |
+
|
612 |
+
with closing(p):
|
613 |
+
processed = processing.process_images(p)
|
614 |
+
image = processed.images[0] if len(processed.images) > 0 else None
|
615 |
+
|
616 |
+
if unload:
|
617 |
+
shared.sd_model.first_stage_model.to(devices.cpu)
|
618 |
+
|
619 |
+
if image is not None:
|
620 |
+
shared.state.assign_current_image(image)
|
621 |
+
|
622 |
+
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
623 |
+
last_saved_image += f", prompt: {preview_text}"
|
624 |
+
|
625 |
+
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
|
626 |
+
tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, embedding.step)
|
627 |
+
|
628 |
+
if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
|
629 |
+
|
630 |
+
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
|
631 |
+
|
632 |
+
info = PngImagePlugin.PngInfo()
|
633 |
+
data = torch.load(last_saved_file)
|
634 |
+
info.add_text("sd-ti-embedding", embedding_to_b64(data))
|
635 |
+
|
636 |
+
title = f"<{data.get('name', '???')}>"
|
637 |
+
|
638 |
+
try:
|
639 |
+
vectorSize = list(data['string_to_param'].values())[0].shape[0]
|
640 |
+
except Exception:
|
641 |
+
vectorSize = '?'
|
642 |
+
|
643 |
+
checkpoint = sd_models.select_checkpoint()
|
644 |
+
footer_left = checkpoint.model_name
|
645 |
+
footer_mid = f'[{checkpoint.shorthash}]'
|
646 |
+
footer_right = f'{vectorSize}v {steps_done}s'
|
647 |
+
|
648 |
+
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
|
649 |
+
captioned_image = insert_image_data_embed(captioned_image, data)
|
650 |
+
|
651 |
+
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
|
652 |
+
embedding_yet_to_be_embedded = False
|
653 |
+
|
654 |
+
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
655 |
+
last_saved_image += f", prompt: {preview_text}"
|
656 |
+
|
657 |
+
shared.state.job_no = embedding.step
|
658 |
+
|
659 |
+
shared.state.textinfo = f"""
|
660 |
+
<p>
|
661 |
+
Loss: {loss_step:.7f}<br/>
|
662 |
+
Step: {steps_done}<br/>
|
663 |
+
Last prompt: {html.escape(batch.cond_text[0])}<br/>
|
664 |
+
Last saved embedding: {html.escape(last_saved_file)}<br/>
|
665 |
+
Last saved image: {html.escape(last_saved_image)}<br/>
|
666 |
+
</p>
|
667 |
+
"""
|
668 |
+
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
|
669 |
+
save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
|
670 |
+
except Exception:
|
671 |
+
errors.report("Error training embedding", exc_info=True)
|
672 |
+
finally:
|
673 |
+
pbar.leave = False
|
674 |
+
pbar.close()
|
675 |
+
shared.sd_model.first_stage_model.to(devices.device)
|
676 |
+
shared.parallel_processing_allowed = old_parallel_processing_allowed
|
677 |
+
sd_hijack_checkpoint.remove()
|
678 |
+
|
679 |
+
return embedding, filename
|
680 |
+
|
681 |
+
|
682 |
+
def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True):
|
683 |
+
old_embedding_name = embedding.name
|
684 |
+
old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
|
685 |
+
old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
|
686 |
+
old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None
|
687 |
+
try:
|
688 |
+
embedding.sd_checkpoint = checkpoint.shorthash
|
689 |
+
embedding.sd_checkpoint_name = checkpoint.model_name
|
690 |
+
if remove_cached_checksum:
|
691 |
+
embedding.cached_checksum = None
|
692 |
+
embedding.name = embedding_name
|
693 |
+
embedding.optimizer_state_dict = optimizer.state_dict()
|
694 |
+
embedding.save(filename)
|
695 |
+
except:
|
696 |
+
embedding.sd_checkpoint = old_sd_checkpoint
|
697 |
+
embedding.sd_checkpoint_name = old_sd_checkpoint_name
|
698 |
+
embedding.name = old_embedding_name
|
699 |
+
embedding.cached_checksum = old_cached_checksum
|
700 |
+
raise
|
modules/textual_inversion/ui.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import html
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
import modules.textual_inversion.textual_inversion
|
6 |
+
from modules import sd_hijack, shared
|
7 |
+
|
8 |
+
|
9 |
+
def create_embedding(name, initialization_text, nvpt, overwrite_old):
|
10 |
+
filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, overwrite_old, init_text=initialization_text)
|
11 |
+
|
12 |
+
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
|
13 |
+
|
14 |
+
return gr.Dropdown.update(choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())), f"Created: {filename}", ""
|
15 |
+
|
16 |
+
|
17 |
+
def train_embedding(*args):
|
18 |
+
|
19 |
+
assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible'
|
20 |
+
|
21 |
+
apply_optimizations = shared.opts.training_xattention_optimizations
|
22 |
+
try:
|
23 |
+
if not apply_optimizations:
|
24 |
+
sd_hijack.undo_optimizations()
|
25 |
+
|
26 |
+
embedding, filename = modules.textual_inversion.textual_inversion.train_embedding(*args)
|
27 |
+
|
28 |
+
res = f"""
|
29 |
+
Training {'interrupted' if shared.state.interrupted else 'finished'} at {embedding.step} steps.
|
30 |
+
Embedding saved to {html.escape(filename)}
|
31 |
+
"""
|
32 |
+
return res, ""
|
33 |
+
except Exception:
|
34 |
+
raise
|
35 |
+
finally:
|
36 |
+
if not apply_optimizations:
|
37 |
+
sd_hijack.apply_optimizations()
|
38 |
+
|