Upload 2 files
Browse files- modules/hypernetworks/hypernetwork.py +782 -0
- modules/hypernetworks/ui.py +38 -0
modules/hypernetworks/hypernetwork.py
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import glob
|
3 |
+
import html
|
4 |
+
import os
|
5 |
+
import inspect
|
6 |
+
from contextlib import closing
|
7 |
+
|
8 |
+
import modules.textual_inversion.dataset
|
9 |
+
import torch
|
10 |
+
import tqdm
|
11 |
+
from einops import rearrange, repeat
|
12 |
+
from ldm.util import default
|
13 |
+
from modules import devices, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors
|
14 |
+
from modules.textual_inversion import textual_inversion, logging
|
15 |
+
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
16 |
+
from torch import einsum
|
17 |
+
from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_
|
18 |
+
|
19 |
+
from collections import deque
|
20 |
+
from statistics import stdev, mean
|
21 |
+
|
22 |
+
|
23 |
+
optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}
|
24 |
+
|
25 |
+
class HypernetworkModule(torch.nn.Module):
|
26 |
+
activation_dict = {
|
27 |
+
"linear": torch.nn.Identity,
|
28 |
+
"relu": torch.nn.ReLU,
|
29 |
+
"leakyrelu": torch.nn.LeakyReLU,
|
30 |
+
"elu": torch.nn.ELU,
|
31 |
+
"swish": torch.nn.Hardswish,
|
32 |
+
"tanh": torch.nn.Tanh,
|
33 |
+
"sigmoid": torch.nn.Sigmoid,
|
34 |
+
}
|
35 |
+
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
|
36 |
+
|
37 |
+
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
|
38 |
+
add_layer_norm=False, activate_output=False, dropout_structure=None):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
self.multiplier = 1.0
|
42 |
+
|
43 |
+
assert layer_structure is not None, "layer_structure must not be None"
|
44 |
+
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
|
45 |
+
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
|
46 |
+
|
47 |
+
linears = []
|
48 |
+
for i in range(len(layer_structure) - 1):
|
49 |
+
|
50 |
+
# Add a fully-connected layer
|
51 |
+
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
|
52 |
+
|
53 |
+
# Add an activation func except last layer
|
54 |
+
if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
|
55 |
+
pass
|
56 |
+
elif activation_func in self.activation_dict:
|
57 |
+
linears.append(self.activation_dict[activation_func]())
|
58 |
+
else:
|
59 |
+
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
|
60 |
+
|
61 |
+
# Add layer normalization
|
62 |
+
if add_layer_norm:
|
63 |
+
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
|
64 |
+
|
65 |
+
# Everything should be now parsed into dropout structure, and applied here.
|
66 |
+
# Since we only have dropouts after layers, dropout structure should start with 0 and end with 0.
|
67 |
+
if dropout_structure is not None and dropout_structure[i+1] > 0:
|
68 |
+
assert 0 < dropout_structure[i+1] < 1, "Dropout probability should be 0 or float between 0 and 1!"
|
69 |
+
linears.append(torch.nn.Dropout(p=dropout_structure[i+1]))
|
70 |
+
# Code explanation : [1, 2, 1] -> dropout is missing when last_layer_dropout is false. [1, 2, 2, 1] -> [0, 0.3, 0, 0], when its True, [0, 0.3, 0.3, 0].
|
71 |
+
|
72 |
+
self.linear = torch.nn.Sequential(*linears)
|
73 |
+
|
74 |
+
if state_dict is not None:
|
75 |
+
self.fix_old_state_dict(state_dict)
|
76 |
+
self.load_state_dict(state_dict)
|
77 |
+
else:
|
78 |
+
for layer in self.linear:
|
79 |
+
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
|
80 |
+
w, b = layer.weight.data, layer.bias.data
|
81 |
+
if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
|
82 |
+
normal_(w, mean=0.0, std=0.01)
|
83 |
+
normal_(b, mean=0.0, std=0)
|
84 |
+
elif weight_init == 'XavierUniform':
|
85 |
+
xavier_uniform_(w)
|
86 |
+
zeros_(b)
|
87 |
+
elif weight_init == 'XavierNormal':
|
88 |
+
xavier_normal_(w)
|
89 |
+
zeros_(b)
|
90 |
+
elif weight_init == 'KaimingUniform':
|
91 |
+
kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
|
92 |
+
zeros_(b)
|
93 |
+
elif weight_init == 'KaimingNormal':
|
94 |
+
kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
|
95 |
+
zeros_(b)
|
96 |
+
else:
|
97 |
+
raise KeyError(f"Key {weight_init} is not defined as initialization!")
|
98 |
+
self.to(devices.device)
|
99 |
+
|
100 |
+
def fix_old_state_dict(self, state_dict):
|
101 |
+
changes = {
|
102 |
+
'linear1.bias': 'linear.0.bias',
|
103 |
+
'linear1.weight': 'linear.0.weight',
|
104 |
+
'linear2.bias': 'linear.1.bias',
|
105 |
+
'linear2.weight': 'linear.1.weight',
|
106 |
+
}
|
107 |
+
|
108 |
+
for fr, to in changes.items():
|
109 |
+
x = state_dict.get(fr, None)
|
110 |
+
if x is None:
|
111 |
+
continue
|
112 |
+
|
113 |
+
del state_dict[fr]
|
114 |
+
state_dict[to] = x
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
return x + self.linear(x) * (self.multiplier if not self.training else 1)
|
118 |
+
|
119 |
+
def trainables(self):
|
120 |
+
layer_structure = []
|
121 |
+
for layer in self.linear:
|
122 |
+
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
|
123 |
+
layer_structure += [layer.weight, layer.bias]
|
124 |
+
return layer_structure
|
125 |
+
|
126 |
+
|
127 |
+
#param layer_structure : sequence used for length, use_dropout : controlling boolean, last_layer_dropout : for compatibility check.
|
128 |
+
def parse_dropout_structure(layer_structure, use_dropout, last_layer_dropout):
|
129 |
+
if layer_structure is None:
|
130 |
+
layer_structure = [1, 2, 1]
|
131 |
+
if not use_dropout:
|
132 |
+
return [0] * len(layer_structure)
|
133 |
+
dropout_values = [0]
|
134 |
+
dropout_values.extend([0.3] * (len(layer_structure) - 3))
|
135 |
+
if last_layer_dropout:
|
136 |
+
dropout_values.append(0.3)
|
137 |
+
else:
|
138 |
+
dropout_values.append(0)
|
139 |
+
dropout_values.append(0)
|
140 |
+
return dropout_values
|
141 |
+
|
142 |
+
|
143 |
+
class Hypernetwork:
|
144 |
+
filename = None
|
145 |
+
name = None
|
146 |
+
|
147 |
+
def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
|
148 |
+
self.filename = None
|
149 |
+
self.name = name
|
150 |
+
self.layers = {}
|
151 |
+
self.step = 0
|
152 |
+
self.sd_checkpoint = None
|
153 |
+
self.sd_checkpoint_name = None
|
154 |
+
self.layer_structure = layer_structure
|
155 |
+
self.activation_func = activation_func
|
156 |
+
self.weight_init = weight_init
|
157 |
+
self.add_layer_norm = add_layer_norm
|
158 |
+
self.use_dropout = use_dropout
|
159 |
+
self.activate_output = activate_output
|
160 |
+
self.last_layer_dropout = kwargs.get('last_layer_dropout', True)
|
161 |
+
self.dropout_structure = kwargs.get('dropout_structure', None)
|
162 |
+
if self.dropout_structure is None:
|
163 |
+
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
|
164 |
+
self.optimizer_name = None
|
165 |
+
self.optimizer_state_dict = None
|
166 |
+
self.optional_info = None
|
167 |
+
|
168 |
+
for size in enable_sizes or []:
|
169 |
+
self.layers[size] = (
|
170 |
+
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
|
171 |
+
self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
|
172 |
+
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
|
173 |
+
self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
|
174 |
+
)
|
175 |
+
self.eval()
|
176 |
+
|
177 |
+
def weights(self):
|
178 |
+
res = []
|
179 |
+
for layers in self.layers.values():
|
180 |
+
for layer in layers:
|
181 |
+
res += layer.parameters()
|
182 |
+
return res
|
183 |
+
|
184 |
+
def train(self, mode=True):
|
185 |
+
for layers in self.layers.values():
|
186 |
+
for layer in layers:
|
187 |
+
layer.train(mode=mode)
|
188 |
+
for param in layer.parameters():
|
189 |
+
param.requires_grad = mode
|
190 |
+
|
191 |
+
def to(self, device):
|
192 |
+
for layers in self.layers.values():
|
193 |
+
for layer in layers:
|
194 |
+
layer.to(device)
|
195 |
+
|
196 |
+
return self
|
197 |
+
|
198 |
+
def set_multiplier(self, multiplier):
|
199 |
+
for layers in self.layers.values():
|
200 |
+
for layer in layers:
|
201 |
+
layer.multiplier = multiplier
|
202 |
+
|
203 |
+
return self
|
204 |
+
|
205 |
+
def eval(self):
|
206 |
+
for layers in self.layers.values():
|
207 |
+
for layer in layers:
|
208 |
+
layer.eval()
|
209 |
+
for param in layer.parameters():
|
210 |
+
param.requires_grad = False
|
211 |
+
|
212 |
+
def save(self, filename):
|
213 |
+
state_dict = {}
|
214 |
+
optimizer_saved_dict = {}
|
215 |
+
|
216 |
+
for k, v in self.layers.items():
|
217 |
+
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
|
218 |
+
|
219 |
+
state_dict['step'] = self.step
|
220 |
+
state_dict['name'] = self.name
|
221 |
+
state_dict['layer_structure'] = self.layer_structure
|
222 |
+
state_dict['activation_func'] = self.activation_func
|
223 |
+
state_dict['is_layer_norm'] = self.add_layer_norm
|
224 |
+
state_dict['weight_initialization'] = self.weight_init
|
225 |
+
state_dict['sd_checkpoint'] = self.sd_checkpoint
|
226 |
+
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
|
227 |
+
state_dict['activate_output'] = self.activate_output
|
228 |
+
state_dict['use_dropout'] = self.use_dropout
|
229 |
+
state_dict['dropout_structure'] = self.dropout_structure
|
230 |
+
state_dict['last_layer_dropout'] = (self.dropout_structure[-2] != 0) if self.dropout_structure is not None else self.last_layer_dropout
|
231 |
+
state_dict['optional_info'] = self.optional_info if self.optional_info else None
|
232 |
+
|
233 |
+
if self.optimizer_name is not None:
|
234 |
+
optimizer_saved_dict['optimizer_name'] = self.optimizer_name
|
235 |
+
|
236 |
+
torch.save(state_dict, filename)
|
237 |
+
if shared.opts.save_optimizer_state and self.optimizer_state_dict:
|
238 |
+
optimizer_saved_dict['hash'] = self.shorthash()
|
239 |
+
optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict
|
240 |
+
torch.save(optimizer_saved_dict, filename + '.optim')
|
241 |
+
|
242 |
+
def load(self, filename):
|
243 |
+
self.filename = filename
|
244 |
+
if self.name is None:
|
245 |
+
self.name = os.path.splitext(os.path.basename(filename))[0]
|
246 |
+
|
247 |
+
state_dict = torch.load(filename, map_location='cpu')
|
248 |
+
|
249 |
+
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
|
250 |
+
self.optional_info = state_dict.get('optional_info', None)
|
251 |
+
self.activation_func = state_dict.get('activation_func', None)
|
252 |
+
self.weight_init = state_dict.get('weight_initialization', 'Normal')
|
253 |
+
self.add_layer_norm = state_dict.get('is_layer_norm', False)
|
254 |
+
self.dropout_structure = state_dict.get('dropout_structure', None)
|
255 |
+
self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False)
|
256 |
+
self.activate_output = state_dict.get('activate_output', True)
|
257 |
+
self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
|
258 |
+
# Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0.
|
259 |
+
if self.dropout_structure is None:
|
260 |
+
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
|
261 |
+
|
262 |
+
if shared.opts.print_hypernet_extra:
|
263 |
+
if self.optional_info is not None:
|
264 |
+
print(f" INFO:\n {self.optional_info}\n")
|
265 |
+
|
266 |
+
print(f" Layer structure: {self.layer_structure}")
|
267 |
+
print(f" Activation function: {self.activation_func}")
|
268 |
+
print(f" Weight initialization: {self.weight_init}")
|
269 |
+
print(f" Layer norm: {self.add_layer_norm}")
|
270 |
+
print(f" Dropout usage: {self.use_dropout}" )
|
271 |
+
print(f" Activate last layer: {self.activate_output}")
|
272 |
+
print(f" Dropout structure: {self.dropout_structure}")
|
273 |
+
|
274 |
+
optimizer_saved_dict = torch.load(self.filename + '.optim', map_location='cpu') if os.path.exists(self.filename + '.optim') else {}
|
275 |
+
|
276 |
+
if self.shorthash() == optimizer_saved_dict.get('hash', None):
|
277 |
+
self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
|
278 |
+
else:
|
279 |
+
self.optimizer_state_dict = None
|
280 |
+
if self.optimizer_state_dict:
|
281 |
+
self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
|
282 |
+
if shared.opts.print_hypernet_extra:
|
283 |
+
print("Loaded existing optimizer from checkpoint")
|
284 |
+
print(f"Optimizer name is {self.optimizer_name}")
|
285 |
+
else:
|
286 |
+
self.optimizer_name = "AdamW"
|
287 |
+
if shared.opts.print_hypernet_extra:
|
288 |
+
print("No saved optimizer exists in checkpoint")
|
289 |
+
|
290 |
+
for size, sd in state_dict.items():
|
291 |
+
if type(size) == int:
|
292 |
+
self.layers[size] = (
|
293 |
+
HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,
|
294 |
+
self.add_layer_norm, self.activate_output, self.dropout_structure),
|
295 |
+
HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,
|
296 |
+
self.add_layer_norm, self.activate_output, self.dropout_structure),
|
297 |
+
)
|
298 |
+
|
299 |
+
self.name = state_dict.get('name', self.name)
|
300 |
+
self.step = state_dict.get('step', 0)
|
301 |
+
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
|
302 |
+
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
|
303 |
+
self.eval()
|
304 |
+
|
305 |
+
def shorthash(self):
|
306 |
+
sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}')
|
307 |
+
|
308 |
+
return sha256[0:10] if sha256 else None
|
309 |
+
|
310 |
+
|
311 |
+
def list_hypernetworks(path):
|
312 |
+
res = {}
|
313 |
+
for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True), key=str.lower):
|
314 |
+
name = os.path.splitext(os.path.basename(filename))[0]
|
315 |
+
# Prevent a hypothetical "None.pt" from being listed.
|
316 |
+
if name != "None":
|
317 |
+
res[name] = filename
|
318 |
+
return res
|
319 |
+
|
320 |
+
|
321 |
+
def load_hypernetwork(name):
|
322 |
+
path = shared.hypernetworks.get(name, None)
|
323 |
+
|
324 |
+
if path is None:
|
325 |
+
return None
|
326 |
+
|
327 |
+
try:
|
328 |
+
hypernetwork = Hypernetwork()
|
329 |
+
hypernetwork.load(path)
|
330 |
+
return hypernetwork
|
331 |
+
except Exception:
|
332 |
+
errors.report(f"Error loading hypernetwork {path}", exc_info=True)
|
333 |
+
return None
|
334 |
+
|
335 |
+
|
336 |
+
def load_hypernetworks(names, multipliers=None):
|
337 |
+
already_loaded = {}
|
338 |
+
|
339 |
+
for hypernetwork in shared.loaded_hypernetworks:
|
340 |
+
if hypernetwork.name in names:
|
341 |
+
already_loaded[hypernetwork.name] = hypernetwork
|
342 |
+
|
343 |
+
shared.loaded_hypernetworks.clear()
|
344 |
+
|
345 |
+
for i, name in enumerate(names):
|
346 |
+
hypernetwork = already_loaded.get(name, None)
|
347 |
+
if hypernetwork is None:
|
348 |
+
hypernetwork = load_hypernetwork(name)
|
349 |
+
|
350 |
+
if hypernetwork is None:
|
351 |
+
continue
|
352 |
+
|
353 |
+
hypernetwork.set_multiplier(multipliers[i] if multipliers else 1.0)
|
354 |
+
shared.loaded_hypernetworks.append(hypernetwork)
|
355 |
+
|
356 |
+
|
357 |
+
def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None):
|
358 |
+
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None)
|
359 |
+
|
360 |
+
if hypernetwork_layers is None:
|
361 |
+
return context_k, context_v
|
362 |
+
|
363 |
+
if layer is not None:
|
364 |
+
layer.hyper_k = hypernetwork_layers[0]
|
365 |
+
layer.hyper_v = hypernetwork_layers[1]
|
366 |
+
|
367 |
+
context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k)))
|
368 |
+
context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v)))
|
369 |
+
return context_k, context_v
|
370 |
+
|
371 |
+
|
372 |
+
def apply_hypernetworks(hypernetworks, context, layer=None):
|
373 |
+
context_k = context
|
374 |
+
context_v = context
|
375 |
+
for hypernetwork in hypernetworks:
|
376 |
+
context_k, context_v = apply_single_hypernetwork(hypernetwork, context_k, context_v, layer)
|
377 |
+
|
378 |
+
return context_k, context_v
|
379 |
+
|
380 |
+
|
381 |
+
def attention_CrossAttention_forward(self, x, context=None, mask=None, **kwargs):
|
382 |
+
h = self.heads
|
383 |
+
|
384 |
+
q = self.to_q(x)
|
385 |
+
context = default(context, x)
|
386 |
+
|
387 |
+
context_k, context_v = apply_hypernetworks(shared.loaded_hypernetworks, context, self)
|
388 |
+
k = self.to_k(context_k)
|
389 |
+
v = self.to_v(context_v)
|
390 |
+
|
391 |
+
q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v))
|
392 |
+
|
393 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
394 |
+
|
395 |
+
if mask is not None:
|
396 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
397 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
398 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
399 |
+
sim.masked_fill_(~mask, max_neg_value)
|
400 |
+
|
401 |
+
# attention, what we cannot get enough of
|
402 |
+
attn = sim.softmax(dim=-1)
|
403 |
+
|
404 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
405 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
406 |
+
return self.to_out(out)
|
407 |
+
|
408 |
+
|
409 |
+
def stack_conds(conds):
|
410 |
+
if len(conds) == 1:
|
411 |
+
return torch.stack(conds)
|
412 |
+
|
413 |
+
# same as in reconstruct_multicond_batch
|
414 |
+
token_count = max([x.shape[0] for x in conds])
|
415 |
+
for i in range(len(conds)):
|
416 |
+
if conds[i].shape[0] != token_count:
|
417 |
+
last_vector = conds[i][-1:]
|
418 |
+
last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1])
|
419 |
+
conds[i] = torch.vstack([conds[i], last_vector_repeated])
|
420 |
+
|
421 |
+
return torch.stack(conds)
|
422 |
+
|
423 |
+
|
424 |
+
def statistics(data):
|
425 |
+
if len(data) < 2:
|
426 |
+
std = 0
|
427 |
+
else:
|
428 |
+
std = stdev(data)
|
429 |
+
total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})"
|
430 |
+
recent_data = data[-32:]
|
431 |
+
if len(recent_data) < 2:
|
432 |
+
std = 0
|
433 |
+
else:
|
434 |
+
std = stdev(recent_data)
|
435 |
+
recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})"
|
436 |
+
return total_information, recent_information
|
437 |
+
|
438 |
+
|
439 |
+
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
|
440 |
+
# Remove illegal characters from name.
|
441 |
+
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
|
442 |
+
assert name, "Name cannot be empty!"
|
443 |
+
|
444 |
+
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
|
445 |
+
if not overwrite_old:
|
446 |
+
assert not os.path.exists(fn), f"file {fn} already exists"
|
447 |
+
|
448 |
+
if type(layer_structure) == str:
|
449 |
+
layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
|
450 |
+
|
451 |
+
if use_dropout and dropout_structure and type(dropout_structure) == str:
|
452 |
+
dropout_structure = [float(x.strip()) for x in dropout_structure.split(",")]
|
453 |
+
else:
|
454 |
+
dropout_structure = [0] * len(layer_structure)
|
455 |
+
|
456 |
+
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
|
457 |
+
name=name,
|
458 |
+
enable_sizes=[int(x) for x in enable_sizes],
|
459 |
+
layer_structure=layer_structure,
|
460 |
+
activation_func=activation_func,
|
461 |
+
weight_init=weight_init,
|
462 |
+
add_layer_norm=add_layer_norm,
|
463 |
+
use_dropout=use_dropout,
|
464 |
+
dropout_structure=dropout_structure
|
465 |
+
)
|
466 |
+
hypernet.save(fn)
|
467 |
+
|
468 |
+
shared.reload_hypernetworks()
|
469 |
+
|
470 |
+
|
471 |
+
def train_hypernetwork(id_task, hypernetwork_name: str, learn_rate: float, batch_size: int, gradient_step: int, data_root: str, log_directory: str, training_width: int, training_height: int, varsize: bool, steps: int, clip_grad_mode: str, clip_grad_value: float, shuffle_tags: bool, tag_drop_out: bool, latent_sampling_method: str, use_weight: bool, create_image_every: int, save_hypernetwork_every: int, template_filename: str, preview_from_txt2img: bool, preview_prompt: str, preview_negative_prompt: str, preview_steps: int, preview_sampler_name: str, preview_cfg_scale: float, preview_seed: int, preview_width: int, preview_height: int):
|
472 |
+
from modules import images, processing
|
473 |
+
|
474 |
+
save_hypernetwork_every = save_hypernetwork_every or 0
|
475 |
+
create_image_every = create_image_every or 0
|
476 |
+
template_file = textual_inversion.textual_inversion_templates.get(template_filename, None)
|
477 |
+
textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
|
478 |
+
template_file = template_file.path
|
479 |
+
|
480 |
+
path = shared.hypernetworks.get(hypernetwork_name, None)
|
481 |
+
hypernetwork = Hypernetwork()
|
482 |
+
hypernetwork.load(path)
|
483 |
+
shared.loaded_hypernetworks = [hypernetwork]
|
484 |
+
|
485 |
+
shared.state.job = "train-hypernetwork"
|
486 |
+
shared.state.textinfo = "Initializing hypernetwork training..."
|
487 |
+
shared.state.job_count = steps
|
488 |
+
|
489 |
+
hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
|
490 |
+
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
491 |
+
|
492 |
+
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
|
493 |
+
unload = shared.opts.unload_models_when_training
|
494 |
+
|
495 |
+
if save_hypernetwork_every > 0:
|
496 |
+
hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
|
497 |
+
os.makedirs(hypernetwork_dir, exist_ok=True)
|
498 |
+
else:
|
499 |
+
hypernetwork_dir = None
|
500 |
+
|
501 |
+
if create_image_every > 0:
|
502 |
+
images_dir = os.path.join(log_directory, "images")
|
503 |
+
os.makedirs(images_dir, exist_ok=True)
|
504 |
+
else:
|
505 |
+
images_dir = None
|
506 |
+
|
507 |
+
checkpoint = sd_models.select_checkpoint()
|
508 |
+
|
509 |
+
initial_step = hypernetwork.step or 0
|
510 |
+
if initial_step >= steps:
|
511 |
+
shared.state.textinfo = "Model has already been trained beyond specified max steps"
|
512 |
+
return hypernetwork, filename
|
513 |
+
|
514 |
+
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
|
515 |
+
|
516 |
+
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None
|
517 |
+
if clip_grad:
|
518 |
+
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
|
519 |
+
|
520 |
+
if shared.opts.training_enable_tensorboard:
|
521 |
+
tensorboard_writer = textual_inversion.tensorboard_setup(log_directory)
|
522 |
+
|
523 |
+
# dataset loading may take a while, so input validations and early returns should be done before this
|
524 |
+
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
525 |
+
|
526 |
+
pin_memory = shared.opts.pin_memory
|
527 |
+
|
528 |
+
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight)
|
529 |
+
|
530 |
+
if shared.opts.save_training_settings_to_txt:
|
531 |
+
saved_params = dict(
|
532 |
+
model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds),
|
533 |
+
**{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]}
|
534 |
+
)
|
535 |
+
logging.save_settings_to_file(log_directory, {**saved_params, **locals()})
|
536 |
+
|
537 |
+
latent_sampling_method = ds.latent_sampling_method
|
538 |
+
|
539 |
+
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
|
540 |
+
|
541 |
+
old_parallel_processing_allowed = shared.parallel_processing_allowed
|
542 |
+
|
543 |
+
if unload:
|
544 |
+
shared.parallel_processing_allowed = False
|
545 |
+
shared.sd_model.cond_stage_model.to(devices.cpu)
|
546 |
+
shared.sd_model.first_stage_model.to(devices.cpu)
|
547 |
+
|
548 |
+
weights = hypernetwork.weights()
|
549 |
+
hypernetwork.train()
|
550 |
+
|
551 |
+
# Here we use optimizer from saved HN, or we can specify as UI option.
|
552 |
+
if hypernetwork.optimizer_name in optimizer_dict:
|
553 |
+
optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate)
|
554 |
+
optimizer_name = hypernetwork.optimizer_name
|
555 |
+
else:
|
556 |
+
print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!")
|
557 |
+
optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
|
558 |
+
optimizer_name = 'AdamW'
|
559 |
+
|
560 |
+
if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer.
|
561 |
+
try:
|
562 |
+
optimizer.load_state_dict(hypernetwork.optimizer_state_dict)
|
563 |
+
except RuntimeError as e:
|
564 |
+
print("Cannot resume from saved optimizer!")
|
565 |
+
print(e)
|
566 |
+
|
567 |
+
scaler = torch.cuda.amp.GradScaler()
|
568 |
+
|
569 |
+
batch_size = ds.batch_size
|
570 |
+
gradient_step = ds.gradient_step
|
571 |
+
# n steps = batch_size * gradient_step * n image processed
|
572 |
+
steps_per_epoch = len(ds) // batch_size // gradient_step
|
573 |
+
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
|
574 |
+
loss_step = 0
|
575 |
+
_loss_step = 0 #internal
|
576 |
+
# size = len(ds.indexes)
|
577 |
+
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
578 |
+
loss_logging = deque(maxlen=len(ds) * 3) # this should be configurable parameter, this is 3 * epoch(dataset size)
|
579 |
+
# losses = torch.zeros((size,))
|
580 |
+
# previous_mean_losses = [0]
|
581 |
+
# previous_mean_loss = 0
|
582 |
+
# print("Mean loss of {} elements".format(size))
|
583 |
+
|
584 |
+
steps_without_grad = 0
|
585 |
+
|
586 |
+
last_saved_file = "<none>"
|
587 |
+
last_saved_image = "<none>"
|
588 |
+
forced_filename = "<none>"
|
589 |
+
|
590 |
+
pbar = tqdm.tqdm(total=steps - initial_step)
|
591 |
+
try:
|
592 |
+
sd_hijack_checkpoint.add()
|
593 |
+
|
594 |
+
for _ in range((steps-initial_step) * gradient_step):
|
595 |
+
if scheduler.finished:
|
596 |
+
break
|
597 |
+
if shared.state.interrupted:
|
598 |
+
break
|
599 |
+
for j, batch in enumerate(dl):
|
600 |
+
# works as a drop_last=True for gradient accumulation
|
601 |
+
if j == max_steps_per_epoch:
|
602 |
+
break
|
603 |
+
scheduler.apply(optimizer, hypernetwork.step)
|
604 |
+
if scheduler.finished:
|
605 |
+
break
|
606 |
+
if shared.state.interrupted:
|
607 |
+
break
|
608 |
+
|
609 |
+
if clip_grad:
|
610 |
+
clip_grad_sched.step(hypernetwork.step)
|
611 |
+
|
612 |
+
with devices.autocast():
|
613 |
+
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
614 |
+
if use_weight:
|
615 |
+
w = batch.weight.to(devices.device, non_blocking=pin_memory)
|
616 |
+
if tag_drop_out != 0 or shuffle_tags:
|
617 |
+
shared.sd_model.cond_stage_model.to(devices.device)
|
618 |
+
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
|
619 |
+
shared.sd_model.cond_stage_model.to(devices.cpu)
|
620 |
+
else:
|
621 |
+
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
|
622 |
+
if use_weight:
|
623 |
+
loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step
|
624 |
+
del w
|
625 |
+
else:
|
626 |
+
loss = shared.sd_model.forward(x, c)[0] / gradient_step
|
627 |
+
del x
|
628 |
+
del c
|
629 |
+
|
630 |
+
_loss_step += loss.item()
|
631 |
+
scaler.scale(loss).backward()
|
632 |
+
|
633 |
+
# go back until we reach gradient accumulation steps
|
634 |
+
if (j + 1) % gradient_step != 0:
|
635 |
+
continue
|
636 |
+
loss_logging.append(_loss_step)
|
637 |
+
if clip_grad:
|
638 |
+
clip_grad(weights, clip_grad_sched.learn_rate)
|
639 |
+
|
640 |
+
scaler.step(optimizer)
|
641 |
+
scaler.update()
|
642 |
+
hypernetwork.step += 1
|
643 |
+
pbar.update()
|
644 |
+
optimizer.zero_grad(set_to_none=True)
|
645 |
+
loss_step = _loss_step
|
646 |
+
_loss_step = 0
|
647 |
+
|
648 |
+
steps_done = hypernetwork.step + 1
|
649 |
+
|
650 |
+
epoch_num = hypernetwork.step // steps_per_epoch
|
651 |
+
epoch_step = hypernetwork.step % steps_per_epoch
|
652 |
+
|
653 |
+
description = f"Training hypernetwork [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}"
|
654 |
+
pbar.set_description(description)
|
655 |
+
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
|
656 |
+
# Before saving, change name to match current checkpoint.
|
657 |
+
hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
|
658 |
+
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
|
659 |
+
hypernetwork.optimizer_name = optimizer_name
|
660 |
+
if shared.opts.save_optimizer_state:
|
661 |
+
hypernetwork.optimizer_state_dict = optimizer.state_dict()
|
662 |
+
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
|
663 |
+
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
664 |
+
|
665 |
+
|
666 |
+
|
667 |
+
if shared.opts.training_enable_tensorboard:
|
668 |
+
epoch_num = hypernetwork.step // len(ds)
|
669 |
+
epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
|
670 |
+
mean_loss = sum(loss_logging) / len(loss_logging)
|
671 |
+
textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num)
|
672 |
+
|
673 |
+
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
|
674 |
+
"loss": f"{loss_step:.7f}",
|
675 |
+
"learn_rate": scheduler.learn_rate
|
676 |
+
})
|
677 |
+
|
678 |
+
if images_dir is not None and steps_done % create_image_every == 0:
|
679 |
+
forced_filename = f'{hypernetwork_name}-{steps_done}'
|
680 |
+
last_saved_image = os.path.join(images_dir, forced_filename)
|
681 |
+
hypernetwork.eval()
|
682 |
+
rng_state = torch.get_rng_state()
|
683 |
+
cuda_rng_state = None
|
684 |
+
if torch.cuda.is_available():
|
685 |
+
cuda_rng_state = torch.cuda.get_rng_state_all()
|
686 |
+
shared.sd_model.cond_stage_model.to(devices.device)
|
687 |
+
shared.sd_model.first_stage_model.to(devices.device)
|
688 |
+
|
689 |
+
p = processing.StableDiffusionProcessingTxt2Img(
|
690 |
+
sd_model=shared.sd_model,
|
691 |
+
do_not_save_grid=True,
|
692 |
+
do_not_save_samples=True,
|
693 |
+
)
|
694 |
+
|
695 |
+
p.disable_extra_networks = True
|
696 |
+
|
697 |
+
if preview_from_txt2img:
|
698 |
+
p.prompt = preview_prompt
|
699 |
+
p.negative_prompt = preview_negative_prompt
|
700 |
+
p.steps = preview_steps
|
701 |
+
p.sampler_name = sd_samplers.samplers_map[preview_sampler_name.lower()]
|
702 |
+
p.cfg_scale = preview_cfg_scale
|
703 |
+
p.seed = preview_seed
|
704 |
+
p.width = preview_width
|
705 |
+
p.height = preview_height
|
706 |
+
else:
|
707 |
+
p.prompt = batch.cond_text[0]
|
708 |
+
p.steps = 20
|
709 |
+
p.width = training_width
|
710 |
+
p.height = training_height
|
711 |
+
|
712 |
+
preview_text = p.prompt
|
713 |
+
|
714 |
+
with closing(p):
|
715 |
+
processed = processing.process_images(p)
|
716 |
+
image = processed.images[0] if len(processed.images) > 0 else None
|
717 |
+
|
718 |
+
if unload:
|
719 |
+
shared.sd_model.cond_stage_model.to(devices.cpu)
|
720 |
+
shared.sd_model.first_stage_model.to(devices.cpu)
|
721 |
+
torch.set_rng_state(rng_state)
|
722 |
+
if torch.cuda.is_available():
|
723 |
+
torch.cuda.set_rng_state_all(cuda_rng_state)
|
724 |
+
hypernetwork.train()
|
725 |
+
if image is not None:
|
726 |
+
shared.state.assign_current_image(image)
|
727 |
+
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
|
728 |
+
textual_inversion.tensorboard_add_image(tensorboard_writer,
|
729 |
+
f"Validation at epoch {epoch_num}", image,
|
730 |
+
hypernetwork.step)
|
731 |
+
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
732 |
+
last_saved_image += f", prompt: {preview_text}"
|
733 |
+
|
734 |
+
shared.state.job_no = hypernetwork.step
|
735 |
+
|
736 |
+
shared.state.textinfo = f"""
|
737 |
+
<p>
|
738 |
+
Loss: {loss_step:.7f}<br/>
|
739 |
+
Step: {steps_done}<br/>
|
740 |
+
Last prompt: {html.escape(batch.cond_text[0])}<br/>
|
741 |
+
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
|
742 |
+
Last saved image: {html.escape(last_saved_image)}<br/>
|
743 |
+
</p>
|
744 |
+
"""
|
745 |
+
except Exception:
|
746 |
+
errors.report("Exception in training hypernetwork", exc_info=True)
|
747 |
+
finally:
|
748 |
+
pbar.leave = False
|
749 |
+
pbar.close()
|
750 |
+
hypernetwork.eval()
|
751 |
+
sd_hijack_checkpoint.remove()
|
752 |
+
|
753 |
+
|
754 |
+
|
755 |
+
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
756 |
+
hypernetwork.optimizer_name = optimizer_name
|
757 |
+
if shared.opts.save_optimizer_state:
|
758 |
+
hypernetwork.optimizer_state_dict = optimizer.state_dict()
|
759 |
+
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
|
760 |
+
|
761 |
+
del optimizer
|
762 |
+
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
763 |
+
shared.sd_model.cond_stage_model.to(devices.device)
|
764 |
+
shared.sd_model.first_stage_model.to(devices.device)
|
765 |
+
shared.parallel_processing_allowed = old_parallel_processing_allowed
|
766 |
+
|
767 |
+
return hypernetwork, filename
|
768 |
+
|
769 |
+
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
|
770 |
+
old_hypernetwork_name = hypernetwork.name
|
771 |
+
old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
|
772 |
+
old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None
|
773 |
+
try:
|
774 |
+
hypernetwork.sd_checkpoint = checkpoint.shorthash
|
775 |
+
hypernetwork.sd_checkpoint_name = checkpoint.model_name
|
776 |
+
hypernetwork.name = hypernetwork_name
|
777 |
+
hypernetwork.save(filename)
|
778 |
+
except:
|
779 |
+
hypernetwork.sd_checkpoint = old_sd_checkpoint
|
780 |
+
hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name
|
781 |
+
hypernetwork.name = old_hypernetwork_name
|
782 |
+
raise
|
modules/hypernetworks/ui.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import html
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import modules.hypernetworks.hypernetwork
|
5 |
+
from modules import devices, sd_hijack, shared
|
6 |
+
|
7 |
+
not_available = ["hardswish", "multiheadattention"]
|
8 |
+
keys = [x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict if x not in not_available]
|
9 |
+
|
10 |
+
|
11 |
+
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
|
12 |
+
filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure)
|
13 |
+
|
14 |
+
return gr.Dropdown.update(choices=sorted(shared.hypernetworks)), f"Created: {filename}", ""
|
15 |
+
|
16 |
+
|
17 |
+
def train_hypernetwork(*args):
|
18 |
+
shared.loaded_hypernetworks = []
|
19 |
+
|
20 |
+
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'
|
21 |
+
|
22 |
+
try:
|
23 |
+
sd_hijack.undo_optimizations()
|
24 |
+
|
25 |
+
hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args)
|
26 |
+
|
27 |
+
res = f"""
|
28 |
+
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
|
29 |
+
Hypernetwork saved to {html.escape(filename)}
|
30 |
+
"""
|
31 |
+
return res, ""
|
32 |
+
except Exception:
|
33 |
+
raise
|
34 |
+
finally:
|
35 |
+
shared.sd_model.cond_stage_model.to(devices.device)
|
36 |
+
shared.sd_model.first_stage_model.to(devices.device)
|
37 |
+
sd_hijack.apply_optimizations()
|
38 |
+
|