PennyJX commited on
Commit
a9658c4
1 Parent(s): 8f48102

Upload 35 files

Browse files
Files changed (35) hide show
  1. extensions/sd-webui-animatediff/.github/FUNDING.yml +13 -0
  2. extensions/sd-webui-animatediff/.github/ISSUE_TEMPLATE/bug_report.yml +91 -0
  3. extensions/sd-webui-animatediff/.github/ISSUE_TEMPLATE/config.yml +1 -0
  4. extensions/sd-webui-animatediff/.github/ISSUE_TEMPLATE/feature_request.yml +13 -0
  5. extensions/sd-webui-animatediff/.gitignore +4 -0
  6. extensions/sd-webui-animatediff/README.md +349 -0
  7. extensions/sd-webui-animatediff/__pycache__/motion_module.cpython-310.pyc +0 -0
  8. extensions/sd-webui-animatediff/model/.gitkeep +0 -0
  9. extensions/sd-webui-animatediff/motion_module.py +657 -0
  10. extensions/sd-webui-animatediff/scripts/__pycache__/animatediff.cpython-310.pyc +0 -0
  11. extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_cn.cpython-310.pyc +0 -0
  12. extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_i2ibatch.cpython-310.pyc +0 -0
  13. extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_infotext.cpython-310.pyc +0 -0
  14. extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_infv2v.cpython-310.pyc +0 -0
  15. extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_latent.cpython-310.pyc +0 -0
  16. extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_lcm.cpython-310.pyc +0 -0
  17. extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_logger.cpython-310.pyc +0 -0
  18. extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_lora.cpython-310.pyc +0 -0
  19. extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_mm.cpython-310.pyc +0 -0
  20. extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_output.cpython-310.pyc +0 -0
  21. extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_prompt.cpython-310.pyc +0 -0
  22. extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_ui.cpython-310.pyc +0 -0
  23. extensions/sd-webui-animatediff/scripts/animatediff.py +279 -0
  24. extensions/sd-webui-animatediff/scripts/animatediff_cn.py +641 -0
  25. extensions/sd-webui-animatediff/scripts/animatediff_i2ibatch.py +309 -0
  26. extensions/sd-webui-animatediff/scripts/animatediff_infotext.py +35 -0
  27. extensions/sd-webui-animatediff/scripts/animatediff_infv2v.py +322 -0
  28. extensions/sd-webui-animatediff/scripts/animatediff_latent.py +84 -0
  29. extensions/sd-webui-animatediff/scripts/animatediff_lcm.py +137 -0
  30. extensions/sd-webui-animatediff/scripts/animatediff_logger.py +41 -0
  31. extensions/sd-webui-animatediff/scripts/animatediff_lora.py +84 -0
  32. extensions/sd-webui-animatediff/scripts/animatediff_mm.py +204 -0
  33. extensions/sd-webui-animatediff/scripts/animatediff_output.py +361 -0
  34. extensions/sd-webui-animatediff/scripts/animatediff_prompt.py +143 -0
  35. extensions/sd-webui-animatediff/scripts/animatediff_ui.py +349 -0
extensions/sd-webui-animatediff/.github/FUNDING.yml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # These are supported funding model platforms
2
+
3
+ github: # Replace with up to 4 GitHub Sponsors-enabled usernames e.g., [user1, user2]
4
+ patreon: conrevo # Replace with a single Patreon username
5
+ open_collective: # Replace with a single Open Collective username
6
+ ko_fi: conrevo # Replace with a single Ko-fi username
7
+ tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel
8
+ community_bridge: # Replace with a single Community Bridge project-name e.g., cloud-foundry
9
+ liberapay: # Replace with a single Liberapay username
10
+ issuehunt: # Replace with a single IssueHunt username
11
+ otechie: # Replace with a single Otechie username
12
+ lfx_crowdfunding: # Replace with a single LFX Crowdfunding project-name e.g., cloud-foundry
13
+ custom: ['https://paypal.me/conrevo', 'https://afdian.net/a/conrevo'] # Replace with up to 4 custom sponsorship URLs e.g., ['link1', 'link2']
extensions/sd-webui-animatediff/.github/ISSUE_TEMPLATE/bug_report.yml ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Bug Report
2
+ description: Create a bug report
3
+ title: "[Bug]: "
4
+ labels: ["bug-report"]
5
+
6
+ body:
7
+ - type: checkboxes
8
+ attributes:
9
+ label: Is there an existing issue for this?
10
+ description: Please search both open issues and closed issues to see if an issue already exists for the bug you encountered, and that it hasn't been fixed in a recent build/commit.
11
+ options:
12
+ - label: I have searched the existing issues and checked the recent builds/commits of both this extension and the webui
13
+ required: true
14
+ - type: checkboxes
15
+ attributes:
16
+ label: Have you read FAQ on README?
17
+ description: I have collected some common questions from AnimateDiff original repository.
18
+ options:
19
+ - label: I have updated WebUI and this extension to the latest version
20
+ required: true
21
+ - type: markdown
22
+ attributes:
23
+ value: |
24
+ *Please fill this form with as much information as possible, don't forget to fill "What OS..." and "What browsers" and *provide screenshots if possible**
25
+ - type: textarea
26
+ id: what-did
27
+ attributes:
28
+ label: What happened?
29
+ description: Tell us what happened in a very clear and simple way
30
+ validations:
31
+ required: true
32
+ - type: textarea
33
+ id: steps
34
+ attributes:
35
+ label: Steps to reproduce the problem
36
+ description: Please provide us with precise step by step information on how to reproduce the bug
37
+ value: |
38
+ 1. Go to ....
39
+ 2. Press ....
40
+ 3. ...
41
+ validations:
42
+ required: true
43
+ - type: textarea
44
+ id: what-should
45
+ attributes:
46
+ label: What should have happened?
47
+ description: Tell what you think the normal behavior should be
48
+ validations:
49
+ required: true
50
+ - type: textarea
51
+ id: commits
52
+ attributes:
53
+ label: Commit where the problem happens
54
+ description: Which commit of the extension are you running on? Please include the commit of both the extension and the webui (Do not write *Latest version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Commit** link at the bottom of the UI, or from the cmd/terminal if you can't launch it.)
55
+ value: |
56
+ webui:
57
+ extension:
58
+ validations:
59
+ required: true
60
+ - type: dropdown
61
+ id: browsers
62
+ attributes:
63
+ label: What browsers do you use to access the UI ?
64
+ multiple: true
65
+ options:
66
+ - Mozilla Firefox
67
+ - Google Chrome
68
+ - Brave
69
+ - Apple Safari
70
+ - Microsoft Edge
71
+ - type: textarea
72
+ id: cmdargs
73
+ attributes:
74
+ label: Command Line Arguments
75
+ description: Are you using any launching parameters/command line arguments (modified webui-user .bat/.sh) ? If yes, please write them below. Write "No" otherwise.
76
+ render: Shell
77
+ validations:
78
+ required: true
79
+ - type: textarea
80
+ id: logs
81
+ attributes:
82
+ label: Console logs
83
+ description: Please provide the errors printed on your console log of your browser (type F12 and go to console) and your terminal, after your bug happened.
84
+ render: Shell
85
+ validations:
86
+ required: true
87
+ - type: textarea
88
+ id: misc
89
+ attributes:
90
+ label: Additional information
91
+ description: Please provide us with any relevant additional info or context.
extensions/sd-webui-animatediff/.github/ISSUE_TEMPLATE/config.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ blank_issues_enabled: true
extensions/sd-webui-animatediff/.github/ISSUE_TEMPLATE/feature_request.yml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Feature Request
2
+ description: Create a feature request
3
+ title: "[Feature]: "
4
+ labels: ["feature-request"]
5
+
6
+ body:
7
+ - type: textarea
8
+ id: feature
9
+ attributes:
10
+ label: Expected behavior
11
+ description: Please describe the feature you want.
12
+ validations:
13
+ required: true
extensions/sd-webui-animatediff/.gitignore ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ __pycache__
2
+ model/*.*
3
+ model/*.*
4
+ TODO.md
extensions/sd-webui-animatediff/README.md ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AnimateDiff for Stable Diffusion WebUI
2
+ This extension aim for integrating [AnimateDiff](https://github.com/guoyww/AnimateDiff/) w/ [CLI](https://github.com/s9roll7/animatediff-cli-prompt-travel) into [AUTOMATIC1111 Stable Diffusion WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) w/ [ControlNet](https://github.com/Mikubill/sd-webui-controlnet). You can generate GIFs in exactly the same way as generating images after enabling this extension.
3
+
4
+ This extension implements AnimateDiff in a different way. It does not require you to clone the whole SD1.5 repository. It also applied (probably) the least modification to `ldm`, so that you do not need to reload your model weights if you don't want to.
5
+
6
+ You might also be interested in another extension I created: [Segment Anything for Stable Diffusion WebUI](https://github.com/continue-revolution/sd-webui-segment-anything).
7
+
8
+
9
+ ## Table of Contents
10
+ - [Update](#update)
11
+ - [How to Use](#how-to-use)
12
+ - [WebUI](#webui)
13
+ - [API](#api)
14
+ - [WebUI Parameters](#webui-parameters)
15
+ - [Img2GIF](#img2gif)
16
+ - [Prompt Travel](#prompt-travel)
17
+ - [ControlNet V2V](#controlnet-v2v)
18
+ - [Model Spec](#model-spec)
19
+ - [Motion LoRA](#motion-lora)
20
+ - [V3](#v3)
21
+ - [SDXL](#sdxl)
22
+ - [Optimizations](#optimizations)
23
+ - [Attention](#attention)
24
+ - [FP8](#fp8)
25
+ - [LCM](#lcm)
26
+ - [Others](#others)
27
+ - [Model Zoo](#model-zoo)
28
+ - [VRAM](#vram)
29
+ - [Batch Size](#batch-size)
30
+ - [Demo](#demo)
31
+ - [Basic Usage](#basic-usage)
32
+ - [Motion LoRA](#motion-lora-1)
33
+ - [Prompt Travel](#prompt-travel-1)
34
+ - [AnimateDiff V3](#animatediff-v3)
35
+ - [AnimateDiff SDXL](#animatediff-sdxl)
36
+ - [ControlNet V2V](#controlnet-v2v-1)
37
+ - [Tutorial](#tutorial)
38
+ - [Thanks](#thanks)
39
+ - [Star History](#star-history)
40
+ - [Sponsor](#sponsor)
41
+
42
+
43
+ ## Update
44
+ - `2023/07/20` [v1.1.0](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.1.0): Fix gif duration, add loop number, remove auto-download, remove xformers, remove instructions on gradio UI, refactor README, add [sponsor](#sponsor) QR code.
45
+ - `2023/07/24` [v1.2.0](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.2.0): Fix incorrect insertion of motion modules, add option to change path to motion modules in `Settings/AnimateDiff`, fix loading different motion modules.
46
+ - `2023/09/04` [v1.3.0](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.3.0): Support any community models with the same architecture; fix grey problem via [#63](https://github.com/continue-revolution/sd-webui-animatediff/issues/63)
47
+ - `2023/09/11` [v1.4.0](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.4.0): Support official v2 motion module (different architecture: GroupNorm not hacked, UNet middle layer has motion module).
48
+ - `2023/09/14`: [v1.4.1](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.4.1): Always change `beta`, `alpha_comprod` and `alpha_comprod_prev` to resolve grey problem in other samplers.
49
+ - `2023/09/16`: [v1.5.0](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.5.0): Randomize init latent to support [better img2gif](#img2gif); add other output formats and infotext output; add appending reversed frames; refactor code to ease maintaining.
50
+ - `2023/09/19`: [v1.5.1](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.5.1): Support xformers, sdp, sub-quadratic attention optimization - [VRAM](#vram) usage decrease to 5.60GB with default setting.
51
+ - `2023/09/22`: [v1.5.2](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.5.2): Option to disable xformers at `Settings/AnimateDiff` [due to a bug in xformers](https://github.com/facebookresearch/xformers/issues/845), [API support](#api), option to enable GIF paletter optimization at `Settings/AnimateDiff`, gifsicle optimization move to `Settings/AnimateDiff`.
52
+ - `2023/09/25`: [v1.6.0](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.6.0): [Motion LoRA](https://github.com/guoyww/AnimateDiff#features) supported. See [Motion Lora](#motion-lora) for more information.
53
+ - `2023/09/27`: [v1.7.0](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.7.0): [ControlNet](https://github.com/Mikubill/sd-webui-controlnet) supported. See [ControlNet V2V](#controlnet-v2v) for more information. [Safetensors](#model-zoo) for some motion modules are also available now.
54
+ - `2023/09/29`: [v1.8.0](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.8.0): Infinite generation supported. See [WebUI Parameters](#webui-parameters) for more information.
55
+ - `2023/10/01`: [v1.8.1](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.8.1): Now you can uncheck `Batch cond/uncond` in `Settings/Optimization` if you want. This will reduce your [VRAM](#vram) (5.31GB -> 4.21GB for SDP) but take longer time.
56
+ - `2023/10/08`: [v1.9.0](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.9.0): Prompt travel supported. You must have ControlNet installed (you do not need to enable ControlNet) to try it. See [Prompt Travel](#prompt-travel) for how to trigger this feature.
57
+ - `2023/10/11`: [v1.9.1](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.9.1): Use state_dict key to guess mm version, replace match case with if else to support python<3.10, option to save PNG to custom dir
58
+ (see `Settings/AnimateDiff` for detail), move hints to js, install imageio\[ffmpeg\] automatically when MP4 save fails.
59
+ - `2023/10/16`: [v1.9.2](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.9.2): Add context generator to completely remove any closed loop, prompt travel support closed loop, infotext fully supported including prompt travel, README refactor
60
+ - `2023/10/19`: [v1.9.3](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.9.3): Support webp output format. See [#233](https://github.com/continue-revolution/sd-webui-animatediff/pull/233) for more information.
61
+ - `2023/10/21`: [v1.9.4](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.9.4): Save prompt travel to output images, `Reverse` merged to `Closed loop` (See [WebUI Parameters](#webui-parameters)), remove `TimestepEmbedSequential` hijack, remove `hints.js`, better explanation of several context-related parameters.
62
+ - `2023/10/25`: [v1.10.0](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.10.0): Support img2img batch. You need ControlNet installed to make it work properly (you do not need to enable ControlNet). See [ControlNet V2V](#controlnet-v2v) for more information.
63
+ - `2023/10/29`: [v1.11.0](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.11.0): [HotShot-XL](https://github.com/hotshotco/Hotshot-XL) supported. See [SDXL](#sdxl) for more information.
64
+ - `2023/11/06`: [v1.11.1](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.11.1): Optimize VRAM for ControlNet V2V, patch [encode_pil_to_base64](https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/master/modules/api/api.py#L104-L133) for api return a video, save frames to `AnimateDiff/yy-mm-dd/`, recover from assertion error, optional [request id](#api) for API.
65
+ - `2023/11/10`: [v1.12.0](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.12.0): [AnimateDiff for SDXL](https://github.com/guoyww/AnimateDiff/tree/sdxl) supported. See [SDXL](#sdxl) for more information.
66
+ - `2023/11/16`: [v1.12.1](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.12.1): FP8 precision and LCM sampler supported. See [Optimizations](#optimizations) for more information. You can also optionally upload videos to AWS S3 storage by configuring appropriately via `Settings/AnimateDiff AWS`.
67
+ - `2023/12/19`: [v1.13.0](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.13.0): [AnimateDiff V3](https://github.com/guoyww/AnimateDiff?tab=readme-ov-file#202312-animatediff-v3-and-sparsectrl) supported. See [V3](#v3) for more information. Also: release all official models in fp16 & safetensors format [here](https://huggingface.co/conrevo/AnimateDiff-A1111/tree/main), add option to disable LCM sampler in `Settings/AnimateDiff`, remove patch [encode_pil_to_base64](https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/master/modules/api/api.py#L104-L133) because A1111 [v1.7.0](https://github.com/AUTOMATIC1111/stable-diffusion-webui/tree/v1.7.0) now supports video return for API.
68
+
69
+ For future update plan, please query [#366](https://github.com/continue-revolution/sd-webui-animatediff/pull/366). `v1.13.x` is the last version update for `v1`. SparseCtrl, Magic Animate and other control methods will be supported in `v2` via updating both this repo and sd-webui-controlnet.
70
+
71
+
72
+ ## How to Use
73
+ 1. Update your WebUI to v1.6.0 and ControlNet to v1.1.410, then install this extension via link. I do not plan to support older version.
74
+ 1. Download motion modules and put the model weights under `stable-diffusion-webui/extensions/sd-webui-animatediff/model/`. If you want to use another directory to save model weights, please go to `Settings/AnimateDiff`. See [model zoo](#model-zoo) for a list of available motion modules.
75
+ 1. Enable `Pad prompt/negative prompt to be same length` in `Settings/Optimization` and click `Apply settings`. You must do this to prevent generating two separate unrelated GIFs. Checking `Batch cond/uncond` is optional, which can improve speed but increase VRAM usage.
76
+ 1. DO NOT disable hash calculation, otherwise AnimateDiff will have trouble figuring out when you switch motion module.
77
+
78
+ ### WebUI
79
+ 1. Go to txt2img if you want to try txt2gif and img2img if you want to try img2gif.
80
+ 1. Choose an SD1.5 checkpoint, write prompts, set configurations such as image width/height. If you want to generate multiple GIFs at once, please [change batch number, instead of batch size](#batch-size).
81
+ 1. Enable AnimateDiff extension, set up [each parameter](#webui-parameters), then click `Generate`.
82
+ 1. You should see the output GIF on the output gallery. You can access GIF output at `stable-diffusion-webui/outputs/{txt2img or img2img}-images/AnimateDiff/{yy-mm-dd}`. You can also access image frames at `stable-diffusion-webui/outputs/{txt2img or img2img}-images/{yy-mm-dd}`. You may choose to save frames for each generation into separate directories in `Settings/AnimateDiff`.
83
+
84
+ ### API
85
+ It is quite similar to the way you use ControlNet. API will return a video in base64 format. In `format`, `PNG` means to save frames to your file system without returning all the frames. If you want your API to return all frames, please add `Frame` to `format` list. For most up-to-date parameters, please read [here](https://github.com/continue-revolution/sd-webui-animatediff/blob/master/scripts/animatediff_ui.py#L26).
86
+ ```
87
+ 'alwayson_scripts': {
88
+ 'AnimateDiff': {
89
+ 'args': [{
90
+ 'model': 'mm_sd_v15_v2.ckpt', # Motion module
91
+ 'format': ['GIF'], # Save format, 'GIF' | 'MP4' | 'PNG' | 'WEBP' | 'WEBM' | 'TXT' | 'Frame'
92
+ 'enable': True, # Enable AnimateDiff
93
+ 'video_length': 16, # Number of frames
94
+ 'fps': 8, # FPS
95
+ 'loop_number': 0, # Display loop number
96
+ 'closed_loop': 'R+P', # Closed loop, 'N' | 'R-P' | 'R+P' | 'A'
97
+ 'batch_size': 16, # Context batch size
98
+ 'stride': 1, # Stride
99
+ 'overlap': -1, # Overlap
100
+ 'interp': 'Off', # Frame interpolation, 'Off' | 'FILM'
101
+ 'interp_x': 10 # Interp X
102
+ 'video_source': 'path/to/video.mp4', # Video source
103
+ 'video_path': 'path/to/frames', # Video path
104
+ 'latent_power': 1, # Latent power
105
+ 'latent_scale': 32, # Latent scale
106
+ 'last_frame': None, # Optional last frame
107
+ 'latent_power_last': 1, # Optional latent power for last frame
108
+ 'latent_scale_last': 32,# Optional latent scale for last frame
109
+ 'request_id': '' # Optional request id. If provided, outputs will have request id as filename suffix
110
+ }
111
+ ]
112
+ }
113
+ },
114
+ ```
115
+
116
+
117
+ ## WebUI Parameters
118
+ 1. **Save format** — Format of the output. Choose at least one of "GIF"|"MP4"|"WEBP"|"WEBM"|"PNG". Check "TXT" if you want infotext, which will live in the same directory as the output GIF. Infotext is also accessible via `stable-diffusion-webui/params.txt` and outputs in all formats.
119
+ 1. You can optimize GIF with `gifsicle` (`apt install gifsicle` required, read [#91](https://github.com/continue-revolution/sd-webui-animatediff/pull/91) for more information) and/or `palette` (read [#104](https://github.com/continue-revolution/sd-webui-animatediff/pull/104) for more information). Go to `Settings/AnimateDiff` to enable them.
120
+ 1. You can set quality and lossless for WEBP via `Settings/AnimateDiff`. Read [#233](https://github.com/continue-revolution/sd-webui-animatediff/pull/233) for more information.
121
+ 1. If you are using API, by adding "PNG" to `format`, you can save all frames to your file system without returning all the frames. If you want your API to return all frames, please add `Frame` to `format` list.
122
+ 1. **Number of frames** — Choose whatever number you like.
123
+
124
+ If you enter 0 (default):
125
+ - If you submit a video via `Video source` / enter a video path via `Video path` / enable ANY batch ControlNet, the number of frames will be the number of frames in the video (use shortest if more than one videos are submitted).
126
+ - Otherwise, the number of frames will be your `Context batch size` described below.
127
+
128
+ If you enter something smaller than your `Context batch size` other than 0: you will get the first `Number of frames` frames as your output GIF from your whole generation. All following frames will not appear in your generated GIF, but will be saved as PNGs as usual. Do not set `Number of frames` to be something smaler than `Context batch size` other than 0 because of [#213](https://github.com/continue-revolution/sd-webui-animatediff/issues/213).
129
+ 1. **FPS** — Frames per second, which is how many frames (images) are shown every second. If 16 frames are generated at 8 frames per second, your GIF’s duration is 2 seconds. If you submit a source video, your FPS will be the same as the source video.
130
+ 1. **Display loop number** — How many times the GIF is played. A value of `0` means the GIF never stops playing.
131
+ 1. **Context batch size** — How many frames will be passed into the motion module at once. The SD1.5 motion modules are trained with 16 frames, so it’ll give the best results when the number of frames is set to `16`. SDXL HotShotXL motion modules are trained with 8 frames instead. Choose [1, 24] for V1 / HotShotXL motion modules and [1, 32] for V2 / AnimateDiffXL motion modules.
132
+ 1. **Closed loop** — Closed loop means that this extension will try to make the last frame the same as the first frame.
133
+ 1. When `Number of frames` > `Context batch size`, including when ControlNet is enabled and the source video frame number > `Context batch size` and `Number of frames` is 0, closed loop will be performed by AnimateDiff infinite context generator.
134
+ 1. When `Number of frames` <= `Context batch size`, AnimateDiff infinite context generator will not be effective. Only when you choose `A` will AnimateDiff append reversed list of frames to the original list of frames to form closed loop.
135
+
136
+ See below for explanation of each choice:
137
+
138
+ - `N` means absolutely no closed loop - this is the only available option if `Number of frames` is smaller than `Context batch size` other than 0.
139
+ - `R-P` means that the extension will try to reduce the number of closed loop context. The prompt travel will not be interpolated to be a closed loop.
140
+ - `R+P` means that the extension will try to reduce the number of closed loop context. The prompt travel will be interpolated to be a closed loop.
141
+ - `A` means that the extension will aggressively try to make the last frame the same as the first frame. The prompt travel will be interpolated to be a closed loop.
142
+ 1. **Stride** — Max motion stride as a power of 2 (default: 1).
143
+ 1. Due to the limitation of the infinite context generator, this parameter is effective only when `Number of frames` > `Context batch size`, including when ControlNet is enabled and the source video frame number > `Context batch size` and `Number of frames` is 0.
144
+ 1. "Absolutely no closed loop" is only possible when `Stride` is 1.
145
+ 1. For each 1 <= $2^i$ <= `Stride`, the infinite context generator will try to make frames $2^i$ apart temporal consistent. For example, if `Stride` is 4 and `Number of frames` is 8, it will make the following frames temporal consistent:
146
+ - `Stride` == 1: [0, 1, 2, 3, 4, 5, 6, 7]
147
+ - `Stride` == 2: [0, 2, 4, 6], [1, 3, 5, 7]
148
+ - `Stride` == 4: [0, 4], [1, 5], [2, 6], [3, 7]
149
+ 1. **Overlap** — Number of frames to overlap in context. If overlap is -1 (default): your overlap will be `Context batch size` // 4.
150
+ 1. Due to the limitation of the infinite context generator, this parameter is effective only when `Number of frames` > `Context batch size`, including when ControlNet is enabled and the source video frame number > `Context batch size` and `Number of frames` is 0.
151
+ 1. **Frame Interpolation** — Interpolate between frames with Deforum's FILM implementation. Requires Deforum extension. [#128](https://github.com/continue-revolution/sd-webui-animatediff/pull/128)
152
+ 1. **Interp X** — Replace each input frame with X interpolated output frames. [#128](https://github.com/continue-revolution/sd-webui-animatediff/pull/128).
153
+ 1. **Video source** — [Optional] Video source file for [ControlNet V2V](#controlnet-v2v). You MUST enable ControlNet. It will be the source control for ALL ControlNet units that you enable without submitting a control image or a path to ControlNet panel. You can of course submit one control image via `Single Image` tab or an input directory via `Batch` tab, which will override this video source input and work as usual.
154
+ 1. **Video path** — [Optional] Folder for source frames for [ControlNet V2V](#controlnet-v2v), but lower priority than `Video source`. You MUST enable ControlNet. It will be the source control for ALL ControlNet units that you enable without submitting a control image or a path to ControlNet. You can of course submit one control image via `Single Image` tab or an input directory via `Batch` tab, which will override this video path input and work as usual.
155
+ - For people who want to inpaint videos: enter a folder which contains two sub-folders `image` and `mask` on ControlNet inpainting unit. These two sub-folders should contain the same number of images. This extension will match them according to the same sequence. Using my [Segment Anything](https://github.com/continue-revolution/sd-webui-segment-anything) extension can make your life much easier.
156
+
157
+ Please read
158
+ - [Img2GIF](#img2gif) for extra parameters on img2gif panel.
159
+ - [Prompt Travel](#prompt-travel) for how to trigger prompt travel.
160
+ - [ControlNet V2V](#controlnet-v2v) for how to use ControlNet V2V.
161
+ - [Model Spec](#model-spec) for how to use Motion LoRA, V3 and SDXL.
162
+
163
+
164
+ ## Img2GIF
165
+ You need to go to img2img and submit an init frame via A1111 panel. You can optionally submit a last frame via extension panel.
166
+
167
+ By default: your `init_latent` will be changed to
168
+ ```
169
+ init_alpha = (1 - frame_number ^ latent_power / latent_scale)
170
+ init_latent = init_latent * init_alpha + random_tensor * (1 - init_alpha)
171
+ ```
172
+
173
+ If you upload a last frame: your `init_latent` will be changed in a similar way. Read [this code](https://github.com/continue-revolution/sd-webui-animatediff/tree/v1.5.0/scripts/animatediff_latent.py#L28-L65) to understand how it works.
174
+
175
+
176
+ ## Prompt Travel
177
+ Write positive prompt following the example below.
178
+
179
+ The first line is head prompt, which is optional. You can write no/single/multiple lines of head prompts.
180
+
181
+ The second and third lines are for prompt interpolation, in format `frame number`: `prompt`. Your `frame number` should be in ascending order, smaller than the total `Number of frames`. The first frame is 0 index.
182
+
183
+ The last line is tail prompt, which is optional. You can write no/single/multiple lines of tail prompts. If you don't need this feature, just write prompts in the old way.
184
+ ```
185
+ 1girl, yoimiya (genshin impact), origen, line, comet, wink, Masterpiece, BestQuality. UltraDetailed, <lora:LineLine2D:0.7>, <lora:yoimiya:0.8>,
186
+ 0: closed mouth
187
+ 8: open mouth
188
+ smile
189
+ ```
190
+
191
+
192
+ ## ControlNet V2V
193
+ You need to go to txt2img / img2img-batch and submit source video or path to frames. Each ControlNet will find control images according to this priority:
194
+ 1. ControlNet `Single Image` tab or `Batch` tab. Simply upload a control image or a directory of control frames is enough.
195
+ 1. Img2img Batch tab `Input directory` if you are using img2img batch. If you upload a directory of control frames, it will be the source control for ALL ControlNet units that you enable without submitting a control image or a path to ControlNet panel.
196
+ 1. AnimateDiff `Video Source`. If you upload a video through `Video Source`, it will be the source control for ALL ControlNet units that you enable without submitting a control image or a path to ControlNet panel.
197
+ 1. AnimateDiff `Video Path`. If you upload a path to frames through `Video Path`, it will be the source control for ALL ControlNet units that you enable without submitting a control image or a path to ControlNet panel.
198
+
199
+ `Number of frames` will be capped to the minimum number of images among all **folders** you provide. Each control image in each folder will be applied to one single frame. If you upload one single image for a ControlNet unit, that image will control **ALL** frames.
200
+
201
+ For people who want to inpaint videos: enter a folder which contains two sub-folders `image` and `mask` on ControlNet inpainting unit. These two sub-folders should contain the same number of images. This extension will match them according to the same sequence. Using my [Segment Anything](https://github.com/continue-revolution/sd-webui-segment-anything) extension can make your life much easier.
202
+
203
+ AnimateDiff in img2img batch will be available in [v1.10.0](https://github.com/continue-revolution/sd-webui-animatediff/pull/224).
204
+
205
+
206
+ ## Model Spec
207
+ ### Motion LoRA
208
+ [Download](https://huggingface.co/conrevo/AnimateDiff-A1111/tree/main/lora) and use them like any other LoRA you use (example: download motion lora to `stable-diffusion-webui/models/Lora` and add `<lora:mm_sd15_v2_lora_PanLeft:0.8>` to your positive prompt). **Motion LoRA only supports V2 motion modules**.
209
+
210
+ ### V3
211
+ V3 has identical state dict keys as V1 but slightly different inference logic (GroupNorm is not hacked for V3). You may optionally use [adapter](https://huggingface.co/conrevo/AnimateDiff-A1111/resolve/main/lora/mm_sd15_v3_adapter.safetensors?download=true) for V3, in the same way as the way you use LoRA. You MUST use [my link](https://huggingface.co/conrevo/AnimateDiff-A1111/resolve/main/lora/mm_sd15_v3_adapter.safetensors?download=true) instead of the [official link](https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_adapter.ckpt?download=true). The official adapter won't work for A1111 due to state dict incompatibility.
212
+
213
+ ### SDXL
214
+ [AnimateDiffXL](https://github.com/guoyww/AnimateDiff/tree/sdxl) and [HotShot-XL](https://github.com/hotshotco/Hotshot-XL) have identical architecture to AnimateDiff-SD1.5. The only 2 difference are
215
+ - HotShot-XL is trained with 8 frames instead of 16 frames. You are recommended to set `Context batch size` to 8 for HotShot-XL.
216
+ - AnimateDiffXL is still trained with 16 frames. You do not need to change `Context batch size` for AnimateDiffXL.
217
+ - AnimateDiffXL & HotShot-XL have fewer layers compared to AnimateDiff-SD1.5 because of SDXL.
218
+ - AnimateDiffXL is trained with higher resolution compared to HotShot-XL.
219
+
220
+ Although AnimateDiffXL & HotShot-XL have identical structure with AnimateDiff-SD1.5, I strongly discourage you from using AnimateDiff-SD1.5 for SDXL, or using HotShot / AnimateDiffXL for SD1.5 - you will get severe artifect if you do that. I have decided not to supported that, despite the fact that it is not hard for me to do that.
221
+
222
+ Technically all features available for AnimateDiff + SD1.5 are also available for (AnimateDiff / HotShot) + SDXL. However, I have not tested all of them. I have tested infinite context generation and prompt travel; I have not tested ControlNet. If you find any bug, please report it to me.
223
+
224
+
225
+ ## Optimizations
226
+ Optimizations can be significantly helpful if you want to improve speed and reduce VRAM usage. With [attention optimization](#attention), [FP8](#fp8) and unchecking `Batch cond/uncond` in `Settings/Optimization`, I am able to run 4 x ControlNet + AnimateDiff + Stable Diffusion to generate 36 frames of 1024 * 1024 images with 18GB VRAM.
227
+
228
+ ### Attention
229
+ Adding `--xformers` / `--opt-sdp-attention` to your command lines can significantly reduce VRAM and improve speed. However, due to a bug in xformers, you may or may not get CUDA error. If you get CUDA error, please either completely switch to `--opt-sdp-attention`, or preserve `--xformers` -> go to `Settings/AnimateDiff` -> choose "Optimize attention layers with sdp (torch >= 2.0.0 required)".
230
+
231
+ ### FP8
232
+ FP8 requires torch >= 2.1.0 and WebUI [test-fp8](https://github.com/AUTOMATIC1111/stable-diffusion-webui/tree/test-fp8) branch by [@KohakuBlueleaf](https://github.com/KohakuBlueleaf). Follow these steps to enable FP8:
233
+ 1. Switch to `test-fp8` branch via `git checkout test-fp8` in your `stable-diffusion-webui` directory.
234
+ 1. Reinstall torch via adding `--reinstall-torch` ONCE to your command line arguments.
235
+ 1. Goto Settings Tab > Optimizations > FP8 weight, change it to `Enable`
236
+
237
+ ### LCM
238
+ [Latent Consistency Model](https://github.com/luosiallen/latent-consistency-model) is a recent breakthrough in Stable Diffusion community. I provide a "gift" to everyone who update this extension to >= [v1.12.1](https://github.com/continue-revolution/sd-webui-animatediff/releases/tag/v1.12.1) - you will find `LCM` sampler in the normal place you select samplers in WebUI. You can generate images / videos within 6-8 steps if you
239
+ - select `Euler A` / `Euler` / `LCM` sampler (other samplers may also work, subject to further experiments)
240
+ - use [LCM LoRA](https://civitai.com/models/195519/lcm-lora-weights-stable-diffusion-acceleration-module)
241
+ - use a low CFG denoising strength (1-2 is recommended)
242
+
243
+ Note that LCM sampler is still under experiment and subject to change adhering to [@luosiallen](https://github.com/luosiallen)'s wish.
244
+
245
+ Benefits of using this extension instead of [sd-webui-lcm](https://github.com/0xbitches/sd-webui-lcm) are
246
+ - you do not need to install diffusers
247
+ - you can use LCM sampler with any other extensions, such as ControlNet and AnimateDiff
248
+
249
+ ### Others
250
+ - Remove any VRAM heavy arguments such as `--no-half`. These arguments can significantly increase VRAM usage and reduce speed.
251
+ - Check `Batch cond/uncond` in `Settings/Optimization` to improve speed; uncheck it to reduce VRAM usage.
252
+
253
+
254
+ ## Model Zoo
255
+ I am maintaining a [huggingface repo](https://huggingface.co/conrevo/AnimateDiff-A1111/tree/main) to provide all official models in fp16 & safetensors format. You are highly recommended to use my link. You MUST use my link to download adapter for V3. You may still use the old links if you want, for all models except adapter for V3.
256
+
257
+ - "Official" models by [@guoyww](https://github.com/guoyww): [Google Drive](https://drive.google.com/drive/folders/1EqLC65eR1-W-sGD0Im7fkED6c8GkiNFI) | [HuggingFace](https://huggingface.co/guoyww/animatediff/tree/main) | [CivitAI](https://civitai.com/models/108836)
258
+ - "Stabilized" community models by [@manshoety](https://huggingface.co/manshoety): [HuggingFace](https://huggingface.co/manshoety/AD_Stabilized_Motion/tree/main)
259
+ - "TemporalDiff" models by [@CiaraRowles](https://huggingface.co/CiaraRowles): [HuggingFace](https://huggingface.co/CiaraRowles/TemporalDiff/tree/main)
260
+ - "HotShotXL" models by [@hotshotco](https://huggingface.co/hotshotco/): [HuggingFace](https://huggingface.co/hotshotco/Hotshot-XL/tree/main)
261
+
262
+
263
+ ## VRAM
264
+ Actual VRAM usage depends on your image size and context batch size. You can try to reduce image size or context batch size to reduce VRAM usage.
265
+
266
+ The following data are SD1.5 + AnimateDiff, tested on Ubuntu 22.04, NVIDIA 4090, torch 2.0.1+cu117, H=W=512, frame=16 (default setting). `w/`/`w/o` means `Batch cond/uncond` in `Settings/Optimization` is checked/unchecked.
267
+ | Optimization | VRAM w/ | VRAM w/o |
268
+ | --- | --- | --- |
269
+ | No optimization | 12.13GB | |
270
+ | xformers/sdp | 5.60GB | 4.21GB |
271
+ | sub-quadratic | 10.39GB | |
272
+
273
+ For SDXL + HotShot + SDP, tested on Ubuntu 22.04, NVIDIA 4090, torch 2.0.1+cu117, H=W=512, frame=8 (default setting), you need 8.66GB VRAM.
274
+
275
+ For SDXL + AnimateDiff + SDP, tested on Ubuntu 22.04, NVIDIA 4090, torch 2.0.1+cu117, H=1024, W=768, frame=16, you need 13.87GB VRAM.
276
+
277
+
278
+ ## Batch Size
279
+ Batch size on WebUI will be replaced by GIF frame number internally: 1 full GIF generated in 1 batch. If you want to generate multiple GIF at once, please change batch number.
280
+
281
+ Batch number is NOT the same as batch size. In A1111 WebUI, batch number is above batch size. Batch number means the number of sequential steps, but batch size means the number of parallel steps. You do not have to worry too much when you increase batch number, but you do need to worry about your VRAM when you increase your batch size (where in this extension, video frame number). You do not need to change batch size at all when you are using this extension.
282
+
283
+ We are currently developing approach to support batch size on WebUI in the near future.
284
+
285
+
286
+ ## Demo
287
+
288
+ ### Basic Usage
289
+ | AnimateDiff | Extension | img2img |
290
+ | --- | --- | --- |
291
+ | ![image](https://user-images.githubusercontent.com/63914308/255306527-5105afe8-d497-4ab1-b5c4-37540e9601f8.gif) |![00013-10788741199826055000](https://github.com/continue-revolution/sd-webui-animatediff/assets/63914308/43b9cf34-dbd1-4120-b220-ea8cb7882272) | ![00018-727621716](https://github.com/continue-revolution/sd-webui-animatediff/assets/63914308/d04bb573-c8ca-4ae6-a2d9-81f8012bec3a) |
292
+
293
+ ### Motion LoRA
294
+ | No LoRA | PanDown | PanLeft |
295
+ | --- | --- | --- |
296
+ | ![00094-1401397431](https://github.com/continue-revolution/sd-webui-animatediff/assets/63914308/d8d2b860-c781-4dd0-8c0a-0eb26970130b) | ![00095-3197605735](https://github.com/continue-revolution/sd-webui-animatediff/assets/63914308/aed2243f-5494-4fe3-a10a-96c57f6f2906) | ![00093-2722547708](https://github.com/continue-revolution/sd-webui-animatediff/assets/63914308/c32e9aaf-54f2-4f40-879b-e800c7c7848c) |
297
+
298
+ ### Prompt Travel
299
+ ![00201-2296305953](https://github.com/continue-revolution/sd-webui-animatediff/assets/63914308/881f317c-f1d2-4635-b84b-b4c4881650f6)
300
+
301
+ The prompt is similar to [above](#prompt-travel).
302
+
303
+ ### AnimateDiff V3
304
+ You should be able to read infotext to understand how I generated this sample.
305
+ ![00024-3973810345](https://github.com/continue-revolution/sd-webui-animatediff/assets/63914308/5f3e3858-8033-4a16-94b0-4dbc0d0a67fc)
306
+
307
+
308
+ ### AnimateDiff SDXL
309
+ You should be able to read infotext to understand how I generated this sample.
310
+ ![00025-1668075705](https://github.com/continue-revolution/sd-webui-animatediff/assets/63914308/6d32daf9-51c6-490f-a942-db36f84f23cf)
311
+
312
+ ### ControlNet V2V
313
+ TODO
314
+
315
+
316
+ ## Tutorial
317
+ TODO
318
+
319
+
320
+ ## Thanks
321
+ I thank researchers from [Shanghai AI Lab](https://www.shlab.org.cn/), especially [@guoyww](https://github.com/guoyww) for creating AnimateDiff. I also thank [@neggles](https://github.com/neggles) and [@s9roll7](https://github.com/s9roll7) for creating and improving [AnimateDiff CLI Prompt Travel](https://github.com/s9roll7/animatediff-cli-prompt-travel). This extension could not be made possible without these creative works.
322
+
323
+ I also thank community developers, especially
324
+ - [@zappityzap](https://github.com/zappityzap) who developed the majority of the [output features](https://github.com/continue-revolution/sd-webui-animatediff/blob/master/scripts/animatediff_output.py)
325
+ - [@TDS4874](https://github.com/TDS4874) and [@opparco](https://github.com/opparco) for resolving the grey issue which significantly improve the performance
326
+ - [@talesofai](https://github.com/talesofai) who developed i2v in [this forked repo](https://github.com/talesofai/AnimateDiff)
327
+ - [@rkfg](https://github.com/rkfg) for developing GIF palette optimization
328
+
329
+ and many others who have contributed to this extension.
330
+
331
+ I also thank community users, especially [@streamline](https://twitter.com/kaizirod) who provided dataset and workflow of ControlNet V2V. His workflow is extremely amazing and definitely worth checking out.
332
+
333
+
334
+ ## Star History
335
+ <a href="https://star-history.com/#continue-revolution/sd-webui-animatediff&Date">
336
+ <picture>
337
+ <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=continue-revolution/sd-webui-animatediff&type=Date&theme=dark" />
338
+ <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=continue-revolution/sd-webui-animatediff&type=Date" />
339
+ <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=continue-revolution/sd-webui-animatediff&type=Date" />
340
+ </picture>
341
+ </a>
342
+
343
+
344
+ ## Sponsor
345
+ You can sponsor me via WeChat, AliPay or [PayPal](https://paypal.me/conrevo). You can also support me via [patreon](https://www.patreon.com/conrevo), [ko-fi](https://ko-fi.com/conrevo) or [afdian](https://afdian.net/a/conrevo).
346
+
347
+ | WeChat | AliPay | PayPal |
348
+ | --- | --- | --- |
349
+ | ![216aff0250c7fd2bb32eeb4f7aae623](https://user-images.githubusercontent.com/63914308/232824466-21051be9-76ce-4862-bb0d-a431c186fce1.jpg) | ![15fe95b4ada738acf3e44c1d45a1805](https://user-images.githubusercontent.com/63914308/232824545-fb108600-729d-4204-8bec-4fd5cc8a14ec.jpg) | ![IMG_1419_](https://github.com/continue-revolution/sd-webui-animatediff/assets/63914308/eaa7b114-a2e6-4ecc-a29f-253ace06d1ea) |
extensions/sd-webui-animatediff/__pycache__/motion_module.cpython-310.pyc ADDED
Binary file (17.6 kB). View file
 
extensions/sd-webui-animatediff/model/.gitkeep ADDED
File without changes
extensions/sd-webui-animatediff/motion_module.py ADDED
@@ -0,0 +1,657 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum
2
+ from typing import Optional
3
+
4
+ import torch
5
+ import torch.nn.functional as F
6
+ from torch import nn
7
+
8
+ from modules import sd_hijack, shared
9
+ from ldm.modules.attention import FeedForward
10
+
11
+ from einops import rearrange, repeat
12
+ import math
13
+
14
+
15
+ class MotionModuleType(Enum):
16
+ AnimateDiffV1 = "AnimateDiff V1, Yuwei GUo, Shanghai AI Lab"
17
+ AnimateDiffV2 = "AnimateDiff V2, Yuwei Guo, Shanghai AI Lab"
18
+ AnimateDiffV3 = "AnimateDiff V3, Yuwei Guo, Shanghai AI Lab"
19
+ AnimateDiffXL = "AnimateDiff SDXL, Yuwei Guo, Shanghai AI Lab"
20
+ HotShotXL = "HotShot-XL, John Mullan, Natural Synthetics Inc"
21
+
22
+
23
+ @staticmethod
24
+ def get_mm_type(state_dict: dict[str, torch.Tensor]):
25
+ keys = list(state_dict.keys())
26
+ if any(["mid_block" in k for k in keys]):
27
+ return MotionModuleType.AnimateDiffV2
28
+ elif any(["temporal_attentions" in k for k in keys]):
29
+ return MotionModuleType.HotShotXL
30
+ elif any(["down_blocks.3" in k for k in keys]):
31
+ if 32 in next((state_dict[key] for key in state_dict if 'pe' in key), None).shape:
32
+ return MotionModuleType.AnimateDiffV3
33
+ else:
34
+ return MotionModuleType.AnimateDiffV1
35
+ else:
36
+ return MotionModuleType.AnimateDiffXL
37
+
38
+
39
+ def zero_module(module):
40
+ # Zero out the parameters of a module and return it.
41
+ for p in module.parameters():
42
+ p.detach().zero_()
43
+ return module
44
+
45
+
46
+ class MotionWrapper(nn.Module):
47
+ def __init__(self, mm_name: str, mm_hash: str, mm_type: MotionModuleType):
48
+ super().__init__()
49
+ self.is_v2 = mm_type == MotionModuleType.AnimateDiffV2
50
+ self.is_v3 = mm_type == MotionModuleType.AnimateDiffV3
51
+ self.is_hotshot = mm_type == MotionModuleType.HotShotXL
52
+ self.is_adxl = mm_type == MotionModuleType.AnimateDiffXL
53
+ self.is_xl = self.is_hotshot or self.is_adxl
54
+ max_len = 32 if (self.is_v2 or self.is_adxl or self.is_v3) else 24
55
+ in_channels = (320, 640, 1280) if (self.is_xl) else (320, 640, 1280, 1280)
56
+ self.down_blocks = nn.ModuleList([])
57
+ self.up_blocks = nn.ModuleList([])
58
+ for c in in_channels:
59
+ self.down_blocks.append(MotionModule(c, num_mm=2, max_len=max_len, is_hotshot=self.is_hotshot))
60
+ self.up_blocks.insert(0,MotionModule(c, num_mm=3, max_len=max_len, is_hotshot=self.is_hotshot))
61
+ if self.is_v2:
62
+ self.mid_block = MotionModule(1280, num_mm=1, max_len=max_len)
63
+ self.mm_name = mm_name
64
+ self.mm_type = mm_type
65
+ self.mm_hash = mm_hash
66
+
67
+
68
+ def enable_gn_hack(self):
69
+ return not (self.is_adxl or self.is_v3)
70
+
71
+
72
+ class MotionModule(nn.Module):
73
+ def __init__(self, in_channels, num_mm, max_len, is_hotshot=False):
74
+ super().__init__()
75
+ motion_modules = nn.ModuleList([get_motion_module(in_channels, max_len, is_hotshot) for _ in range(num_mm)])
76
+ if is_hotshot:
77
+ self.temporal_attentions = motion_modules
78
+ else:
79
+ self.motion_modules = motion_modules
80
+
81
+
82
+
83
+ def get_motion_module(in_channels, max_len, is_hotshot):
84
+ vtm = VanillaTemporalModule(in_channels=in_channels, temporal_position_encoding_max_len=max_len, is_hotshot=is_hotshot)
85
+ return vtm.temporal_transformer if is_hotshot else vtm
86
+
87
+
88
+ class VanillaTemporalModule(nn.Module):
89
+ def __init__(
90
+ self,
91
+ in_channels,
92
+ num_attention_heads = 8,
93
+ num_transformer_block = 1,
94
+ attention_block_types =( "Temporal_Self", "Temporal_Self" ),
95
+ cross_frame_attention_mode = None,
96
+ temporal_position_encoding = True,
97
+ temporal_position_encoding_max_len = 24,
98
+ temporal_attention_dim_div = 1,
99
+ zero_initialize = True,
100
+ is_hotshot = False,
101
+ ):
102
+ super().__init__()
103
+
104
+ self.temporal_transformer = TemporalTransformer3DModel(
105
+ in_channels=in_channels,
106
+ num_attention_heads=num_attention_heads,
107
+ attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
108
+ num_layers=num_transformer_block,
109
+ attention_block_types=attention_block_types,
110
+ cross_frame_attention_mode=cross_frame_attention_mode,
111
+ temporal_position_encoding=temporal_position_encoding,
112
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
113
+ is_hotshot=is_hotshot,
114
+ )
115
+
116
+ if zero_initialize:
117
+ self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
118
+
119
+
120
+ def forward(self, input_tensor, encoder_hidden_states=None, attention_mask=None): # TODO: encoder_hidden_states do seem to be always None
121
+ return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask)
122
+
123
+
124
+ class TemporalTransformer3DModel(nn.Module):
125
+ def __init__(
126
+ self,
127
+ in_channels,
128
+ num_attention_heads,
129
+ attention_head_dim,
130
+
131
+ num_layers,
132
+ attention_block_types = ( "Temporal_Self", "Temporal_Self", ),
133
+ dropout = 0.0,
134
+ norm_num_groups = 32,
135
+ cross_attention_dim = 768,
136
+ activation_fn = "geglu",
137
+ attention_bias = False,
138
+ upcast_attention = False,
139
+
140
+ cross_frame_attention_mode = None,
141
+ temporal_position_encoding = False,
142
+ temporal_position_encoding_max_len = 24,
143
+ is_hotshot = False,
144
+ ):
145
+ super().__init__()
146
+
147
+ inner_dim = num_attention_heads * attention_head_dim
148
+
149
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
150
+ self.proj_in = nn.Linear(in_channels, inner_dim)
151
+
152
+ self.transformer_blocks = nn.ModuleList(
153
+ [
154
+ TemporalTransformerBlock(
155
+ dim=inner_dim,
156
+ num_attention_heads=num_attention_heads,
157
+ attention_head_dim=attention_head_dim,
158
+ attention_block_types=attention_block_types,
159
+ dropout=dropout,
160
+ norm_num_groups=norm_num_groups,
161
+ cross_attention_dim=cross_attention_dim,
162
+ activation_fn=activation_fn,
163
+ attention_bias=attention_bias,
164
+ upcast_attention=upcast_attention,
165
+ cross_frame_attention_mode=cross_frame_attention_mode,
166
+ temporal_position_encoding=temporal_position_encoding,
167
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
168
+ is_hotshot=is_hotshot,
169
+ )
170
+ for d in range(num_layers)
171
+ ]
172
+ )
173
+ self.proj_out = nn.Linear(inner_dim, in_channels)
174
+
175
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
176
+ video_length = hidden_states.shape[0] // (2 if shared.opts.batch_cond_uncond else 1)
177
+ batch, channel, height, weight = hidden_states.shape
178
+ residual = hidden_states
179
+
180
+ hidden_states = self.norm(hidden_states).type(hidden_states.dtype)
181
+ inner_dim = hidden_states.shape[1]
182
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
183
+ hidden_states = self.proj_in(hidden_states)
184
+
185
+ # Transformer Blocks
186
+ for block in self.transformer_blocks:
187
+ hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length)
188
+
189
+ # output
190
+ hidden_states = self.proj_out(hidden_states)
191
+ hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
192
+
193
+ output = hidden_states + residual
194
+ return output
195
+
196
+
197
+ class TemporalTransformerBlock(nn.Module):
198
+ def __init__(
199
+ self,
200
+ dim,
201
+ num_attention_heads,
202
+ attention_head_dim,
203
+ attention_block_types = ( "Temporal_Self", "Temporal_Self", ),
204
+ dropout = 0.0,
205
+ norm_num_groups = 32,
206
+ cross_attention_dim = 768,
207
+ activation_fn = "geglu",
208
+ attention_bias = False,
209
+ upcast_attention = False,
210
+ cross_frame_attention_mode = None,
211
+ temporal_position_encoding = False,
212
+ temporal_position_encoding_max_len = 24,
213
+ is_hotshot = False,
214
+ ):
215
+ super().__init__()
216
+
217
+ attention_blocks = []
218
+ norms = []
219
+
220
+ for block_name in attention_block_types:
221
+ attention_blocks.append(
222
+ VersatileAttention(
223
+ attention_mode=block_name.split("_")[0],
224
+ cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
225
+
226
+ query_dim=dim,
227
+ heads=num_attention_heads,
228
+ dim_head=attention_head_dim,
229
+ dropout=dropout,
230
+ bias=attention_bias,
231
+ upcast_attention=upcast_attention,
232
+
233
+ cross_frame_attention_mode=cross_frame_attention_mode,
234
+ temporal_position_encoding=temporal_position_encoding,
235
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
236
+ is_hotshot=is_hotshot,
237
+ )
238
+ )
239
+ norms.append(nn.LayerNorm(dim))
240
+
241
+ self.attention_blocks = nn.ModuleList(attention_blocks)
242
+ self.norms = nn.ModuleList(norms)
243
+
244
+ self.ff = FeedForward(dim, dropout=dropout, glu=(activation_fn=='geglu'))
245
+ self.ff_norm = nn.LayerNorm(dim)
246
+
247
+
248
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
249
+ for attention_block, norm in zip(self.attention_blocks, self.norms):
250
+ norm_hidden_states = norm(hidden_states).type(hidden_states.dtype)
251
+ hidden_states = attention_block(
252
+ norm_hidden_states,
253
+ encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
254
+ video_length=video_length,
255
+ ) + hidden_states
256
+
257
+ hidden_states = self.ff(self.ff_norm(hidden_states).type(hidden_states.dtype)) + hidden_states
258
+
259
+ output = hidden_states
260
+ return output
261
+
262
+
263
+ class PositionalEncoding(nn.Module):
264
+ def __init__(
265
+ self,
266
+ d_model,
267
+ dropout = 0.,
268
+ max_len = 24,
269
+ is_hotshot = False,
270
+ ):
271
+ super().__init__()
272
+ self.dropout = nn.Dropout(p=dropout)
273
+ position = torch.arange(max_len).unsqueeze(1)
274
+ div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
275
+ pe = torch.zeros(1, max_len, d_model)
276
+ pe[0, :, 0::2] = torch.sin(position * div_term)
277
+ pe[0, :, 1::2] = torch.cos(position * div_term)
278
+ self.register_buffer('positional_encoding' if is_hotshot else 'pe', pe)
279
+ self.is_hotshot = is_hotshot
280
+
281
+ def forward(self, x):
282
+ x = x + (self.positional_encoding[:, :x.size(1)] if self.is_hotshot else self.pe[:, :x.size(1)])
283
+ return self.dropout(x)
284
+
285
+
286
+ class CrossAttention(nn.Module):
287
+ r"""
288
+ A cross attention layer.
289
+
290
+ Parameters:
291
+ query_dim (`int`): The number of channels in the query.
292
+ cross_attention_dim (`int`, *optional*):
293
+ The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
294
+ heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
295
+ dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
296
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
297
+ bias (`bool`, *optional*, defaults to False):
298
+ Set to `True` for the query, key, and value linear layers to contain a bias parameter.
299
+ """
300
+
301
+ def __init__(
302
+ self,
303
+ query_dim: int,
304
+ cross_attention_dim: Optional[int] = None,
305
+ heads: int = 8,
306
+ dim_head: int = 64,
307
+ dropout: float = 0.0,
308
+ bias=False,
309
+ upcast_attention: bool = False,
310
+ upcast_softmax: bool = False,
311
+ added_kv_proj_dim: Optional[int] = None,
312
+ norm_num_groups: Optional[int] = None,
313
+ ):
314
+ super().__init__()
315
+ inner_dim = dim_head * heads
316
+ cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
317
+ self.upcast_attention = upcast_attention
318
+ self.upcast_softmax = upcast_softmax
319
+
320
+ self.scale = dim_head**-0.5
321
+
322
+ self.heads = heads
323
+ # for slice_size > 0 the attention score computation
324
+ # is split across the batch axis to save memory
325
+ # You can set slice_size with `set_attention_slice`
326
+ self.sliceable_head_dim = heads
327
+ self._slice_size = None
328
+
329
+ self.added_kv_proj_dim = added_kv_proj_dim
330
+
331
+ if norm_num_groups is not None:
332
+ self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
333
+ else:
334
+ self.group_norm = None
335
+
336
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
337
+ self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
338
+ self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
339
+
340
+ if self.added_kv_proj_dim is not None:
341
+ self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
342
+ self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
343
+
344
+ self.to_out = nn.ModuleList([])
345
+ self.to_out.append(nn.Linear(inner_dim, query_dim))
346
+ self.to_out.append(nn.Dropout(dropout))
347
+
348
+ def reshape_heads_to_batch_dim(self, tensor):
349
+ batch_size, seq_len, dim = tensor.shape
350
+ head_size = self.heads
351
+ tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
352
+ tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
353
+ return tensor
354
+
355
+ def reshape_batch_dim_to_heads(self, tensor):
356
+ batch_size, seq_len, dim = tensor.shape
357
+ head_size = self.heads
358
+ tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
359
+ tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
360
+ return tensor
361
+
362
+ def set_attention_slice(self, slice_size):
363
+ if slice_size is not None and slice_size > self.sliceable_head_dim:
364
+ raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
365
+
366
+ self._slice_size = slice_size
367
+
368
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
369
+ batch_size, sequence_length, _ = hidden_states.shape
370
+
371
+ encoder_hidden_states = encoder_hidden_states
372
+
373
+ if self.group_norm is not None:
374
+ hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2).type(hidden_states.dtype)
375
+
376
+ query = self.to_q(hidden_states)
377
+ dim = query.shape[-1]
378
+ query = self.reshape_heads_to_batch_dim(query)
379
+
380
+ if self.added_kv_proj_dim is not None:
381
+ key = self.to_k(hidden_states)
382
+ value = self.to_v(hidden_states)
383
+ encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states)
384
+ encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states)
385
+
386
+ key = self.reshape_heads_to_batch_dim(key)
387
+ value = self.reshape_heads_to_batch_dim(value)
388
+ encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj)
389
+ encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj)
390
+
391
+ key = torch.concat([encoder_hidden_states_key_proj, key], dim=1)
392
+ value = torch.concat([encoder_hidden_states_value_proj, value], dim=1)
393
+ else:
394
+ encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
395
+ key = self.to_k(encoder_hidden_states)
396
+ value = self.to_v(encoder_hidden_states)
397
+
398
+ key = self.reshape_heads_to_batch_dim(key)
399
+ value = self.reshape_heads_to_batch_dim(value)
400
+
401
+ if attention_mask is not None:
402
+ if attention_mask.shape[-1] != query.shape[1]:
403
+ target_length = query.shape[1]
404
+ attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
405
+ attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
406
+
407
+ # attention, what we cannot get enough of
408
+ if sd_hijack.current_optimizer is not None and sd_hijack.current_optimizer.name in ["xformers", "sdp", "sdp-no-mem", "sub-quadratic"]:
409
+ hidden_states = self._memory_efficient_attention(query, key, value, attention_mask, sd_hijack.current_optimizer.name)
410
+ # Some versions of xformers return output in fp32, cast it back to the dtype of the input
411
+ hidden_states = hidden_states.to(query.dtype)
412
+ else:
413
+ if self._slice_size is None or query.shape[0] // self._slice_size == 1:
414
+ hidden_states = self._attention(query, key, value, attention_mask)
415
+ else:
416
+ hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
417
+
418
+ # linear proj
419
+ hidden_states = self.to_out[0](hidden_states)
420
+
421
+ # dropout
422
+ hidden_states = self.to_out[1](hidden_states)
423
+ return hidden_states
424
+
425
+ def _attention(self, query, key, value, attention_mask=None):
426
+ if self.upcast_attention:
427
+ query = query.float()
428
+ key = key.float()
429
+
430
+ attention_scores = torch.baddbmm(
431
+ torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
432
+ query,
433
+ key.transpose(-1, -2),
434
+ beta=0,
435
+ alpha=self.scale,
436
+ )
437
+
438
+ if attention_mask is not None:
439
+ attention_scores = attention_scores + attention_mask
440
+
441
+ if self.upcast_softmax:
442
+ attention_scores = attention_scores.float()
443
+
444
+ attention_probs = attention_scores.softmax(dim=-1)
445
+
446
+ # cast back to the original dtype
447
+ attention_probs = attention_probs.to(value.dtype)
448
+
449
+ # compute attention output
450
+ hidden_states = torch.bmm(attention_probs, value)
451
+
452
+ # reshape hidden_states
453
+ hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
454
+ return hidden_states
455
+
456
+ def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask):
457
+ batch_size_attention = query.shape[0]
458
+ hidden_states = torch.zeros(
459
+ (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
460
+ )
461
+ slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
462
+ for i in range(hidden_states.shape[0] // slice_size):
463
+ start_idx = i * slice_size
464
+ end_idx = (i + 1) * slice_size
465
+
466
+ query_slice = query[start_idx:end_idx]
467
+ key_slice = key[start_idx:end_idx]
468
+
469
+ if self.upcast_attention:
470
+ query_slice = query_slice.float()
471
+ key_slice = key_slice.float()
472
+
473
+ attn_slice = torch.baddbmm(
474
+ torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device),
475
+ query_slice,
476
+ key_slice.transpose(-1, -2),
477
+ beta=0,
478
+ alpha=self.scale,
479
+ )
480
+
481
+ if attention_mask is not None:
482
+ attn_slice = attn_slice + attention_mask[start_idx:end_idx]
483
+
484
+ if self.upcast_softmax:
485
+ attn_slice = attn_slice.float()
486
+
487
+ attn_slice = attn_slice.softmax(dim=-1)
488
+
489
+ # cast back to the original dtype
490
+ attn_slice = attn_slice.to(value.dtype)
491
+ attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
492
+
493
+ hidden_states[start_idx:end_idx] = attn_slice
494
+
495
+ # reshape hidden_states
496
+ hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
497
+ return hidden_states
498
+
499
+ def _memory_efficient_attention(self, q, k, v, mask, current_optimizer_name):
500
+ # TODO attention_mask
501
+ q = q.contiguous()
502
+ k = k.contiguous()
503
+ v = v.contiguous()
504
+
505
+ fallthrough = False
506
+
507
+ if current_optimizer_name == "xformers" or fallthrough:
508
+ fallthrough = False
509
+ try:
510
+ import xformers.ops
511
+ from modules.sd_hijack_optimizations import get_xformers_flash_attention_op
512
+ hidden_states = xformers.ops.memory_efficient_attention(
513
+ q, k, v, attn_bias=mask,
514
+ op=get_xformers_flash_attention_op(q, k, v))
515
+ except (ImportError, RuntimeError, AttributeError):
516
+ fallthrough = True
517
+
518
+ if current_optimizer_name == "sdp" or fallthrough:
519
+ fallthrough = False
520
+ try:
521
+ hidden_states = torch.nn.functional.scaled_dot_product_attention(
522
+ q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
523
+ )
524
+ except (ImportError, RuntimeError, AttributeError):
525
+ fallthrough = True
526
+
527
+ if current_optimizer_name == "sdp-no-mem" or fallthrough:
528
+ fallthrough = False
529
+ try:
530
+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
531
+ hidden_states = torch.nn.functional.scaled_dot_product_attention(
532
+ q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
533
+ )
534
+ except (ImportError, RuntimeError, AttributeError):
535
+ fallthrough = True
536
+
537
+ if current_optimizer_name == "sub-quadratic" or fallthrough:
538
+ fallthrough = False
539
+ try:
540
+ from modules.sd_hijack_optimizations import sub_quad_attention
541
+ from modules import shared
542
+ hidden_states = sub_quad_attention(
543
+ q, k, v,
544
+ q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size,
545
+ kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size,
546
+ chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold,
547
+ use_checkpoint=self.training
548
+ )
549
+ except (ImportError, RuntimeError, AttributeError):
550
+ fallthrough = True
551
+
552
+ if fallthrough:
553
+ fallthrough = False
554
+ if self._slice_size is None or query.shape[0] // self._slice_size == 1:
555
+ hidden_states = self._attention(query, key, value, attention_mask)
556
+ else:
557
+ hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
558
+ return hidden_states
559
+
560
+ hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
561
+ return hidden_states
562
+
563
+
564
+ class VersatileAttention(CrossAttention):
565
+ def __init__(
566
+ self,
567
+ attention_mode = None,
568
+ cross_frame_attention_mode = None,
569
+ temporal_position_encoding = False,
570
+ temporal_position_encoding_max_len = 24,
571
+ is_hotshot = False,
572
+ *args, **kwargs
573
+ ):
574
+ super().__init__(*args, **kwargs)
575
+ assert attention_mode == "Temporal"
576
+
577
+ self.attention_mode = attention_mode
578
+ self.is_cross_attention = kwargs["cross_attention_dim"] is not None
579
+
580
+ self.pos_encoder = PositionalEncoding(
581
+ kwargs["query_dim"],
582
+ dropout=0.,
583
+ max_len=temporal_position_encoding_max_len,
584
+ is_hotshot=is_hotshot,
585
+ ) if (temporal_position_encoding and attention_mode == "Temporal") else None
586
+
587
+ def extra_repr(self):
588
+ return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
589
+
590
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
591
+ batch_size, sequence_length, _ = hidden_states.shape
592
+
593
+ if self.attention_mode == "Temporal":
594
+ d = hidden_states.shape[1]
595
+ hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
596
+
597
+ if self.pos_encoder is not None:
598
+ hidden_states = self.pos_encoder(hidden_states)
599
+
600
+ encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states
601
+ else:
602
+ raise NotImplementedError
603
+
604
+ encoder_hidden_states = encoder_hidden_states
605
+
606
+ if self.group_norm is not None:
607
+ hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2).dtype(hidden_states.dtype)
608
+
609
+ query = self.to_q(hidden_states)
610
+ dim = query.shape[-1]
611
+ query = self.reshape_heads_to_batch_dim(query)
612
+
613
+ if self.added_kv_proj_dim is not None:
614
+ raise NotImplementedError
615
+
616
+ encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
617
+ key = self.to_k(encoder_hidden_states)
618
+ value = self.to_v(encoder_hidden_states)
619
+
620
+ key = self.reshape_heads_to_batch_dim(key)
621
+ value = self.reshape_heads_to_batch_dim(value)
622
+
623
+ if attention_mask is not None:
624
+ if attention_mask.shape[-1] != query.shape[1]:
625
+ target_length = query.shape[1]
626
+ attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
627
+ attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
628
+
629
+ xformers_option = shared.opts.data.get("animatediff_xformers", "Optimize attention layers with xformers")
630
+ optimizer_collections = ["xformers", "sdp", "sdp-no-mem", "sub-quadratic"]
631
+ if xformers_option == "Do not optimize attention layers": # "Do not optimize attention layers"
632
+ optimizer_collections = optimizer_collections[1:]
633
+
634
+ # attention, what we cannot get enough of
635
+ if sd_hijack.current_optimizer is not None and sd_hijack.current_optimizer.name in optimizer_collections:
636
+ optimizer_name = sd_hijack.current_optimizer.name
637
+ if xformers_option == "Optimize attention layers with sdp (torch >= 2.0.0 required)" and optimizer_name == "xformers":
638
+ optimizer_name = "sdp" # "Optimize attention layers with sdp (torch >= 2.0.0 required)"
639
+ hidden_states = self._memory_efficient_attention(query, key, value, attention_mask, optimizer_name)
640
+ # Some versions of xformers return output in fp32, cast it back to the dtype of the input
641
+ hidden_states = hidden_states.to(query.dtype)
642
+ else:
643
+ if self._slice_size is None or query.shape[0] // self._slice_size == 1:
644
+ hidden_states = self._attention(query, key, value, attention_mask)
645
+ else:
646
+ hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
647
+
648
+ # linear proj
649
+ hidden_states = self.to_out[0](hidden_states)
650
+
651
+ # dropout
652
+ hidden_states = self.to_out[1](hidden_states)
653
+
654
+ if self.attention_mode == "Temporal":
655
+ hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
656
+
657
+ return hidden_states
extensions/sd-webui-animatediff/scripts/__pycache__/animatediff.cpython-310.pyc ADDED
Binary file (7.49 kB). View file
 
extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_cn.cpython-310.pyc ADDED
Binary file (19.2 kB). View file
 
extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_i2ibatch.cpython-310.pyc ADDED
Binary file (9.34 kB). View file
 
extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_infotext.cpython-310.pyc ADDED
Binary file (1.53 kB). View file
 
extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_infv2v.cpython-310.pyc ADDED
Binary file (12.4 kB). View file
 
extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_latent.cpython-310.pyc ADDED
Binary file (2.66 kB). View file
 
extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_lcm.cpython-310.pyc ADDED
Binary file (5.9 kB). View file
 
extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_logger.cpython-310.pyc ADDED
Binary file (1.29 kB). View file
 
extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_lora.cpython-310.pyc ADDED
Binary file (2.77 kB). View file
 
extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_mm.cpython-310.pyc ADDED
Binary file (6.79 kB). View file
 
extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_output.cpython-310.pyc ADDED
Binary file (11.2 kB). View file
 
extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_prompt.cpython-310.pyc ADDED
Binary file (5.22 kB). View file
 
extensions/sd-webui-animatediff/scripts/__pycache__/animatediff_ui.cpython-310.pyc ADDED
Binary file (9.55 kB). View file
 
extensions/sd-webui-animatediff/scripts/animatediff.py ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from modules import script_callbacks, scripts, shared
3
+ from modules.processing import (Processed, StableDiffusionProcessing,
4
+ StableDiffusionProcessingImg2Img)
5
+ from modules.scripts import PostprocessBatchListArgs, PostprocessImageArgs
6
+
7
+ from scripts.animatediff_cn import AnimateDiffControl
8
+ from scripts.animatediff_infv2v import AnimateDiffInfV2V
9
+ from scripts.animatediff_latent import AnimateDiffI2VLatent
10
+ from scripts.animatediff_logger import logger_animatediff as logger
11
+ from scripts.animatediff_lora import AnimateDiffLora
12
+ from scripts.animatediff_mm import mm_animatediff as motion_module
13
+ from scripts.animatediff_prompt import AnimateDiffPromptSchedule
14
+ from scripts.animatediff_output import AnimateDiffOutput
15
+ from scripts.animatediff_ui import AnimateDiffProcess, AnimateDiffUiGroup
16
+ from scripts.animatediff_infotext import update_infotext
17
+
18
+ script_dir = scripts.basedir()
19
+ motion_module.set_script_dir(script_dir)
20
+
21
+
22
+ class AnimateDiffScript(scripts.Script):
23
+
24
+ def __init__(self):
25
+ self.lora_hacker = None
26
+ self.cfg_hacker = None
27
+ self.cn_hacker = None
28
+ self.prompt_scheduler = None
29
+ self.hacked = False
30
+
31
+
32
+ def title(self):
33
+ return "AnimateDiff"
34
+
35
+
36
+ def show(self, is_img2img):
37
+ return scripts.AlwaysVisible
38
+
39
+
40
+ def ui(self, is_img2img):
41
+ return (AnimateDiffUiGroup().render(is_img2img, motion_module.get_model_dir()),)
42
+
43
+
44
+ def before_process(self, p: StableDiffusionProcessing, params: AnimateDiffProcess):
45
+ if p.is_api and isinstance(params, dict):
46
+ self.ad_params = AnimateDiffProcess(**params)
47
+ params = self.ad_params
48
+ if params.enable:
49
+ logger.info("AnimateDiff process start.")
50
+ params.set_p(p)
51
+ motion_module.inject(p.sd_model, params.model)
52
+ self.prompt_scheduler = AnimateDiffPromptSchedule()
53
+ self.lora_hacker = AnimateDiffLora(motion_module.mm.is_v2)
54
+ self.lora_hacker.hack()
55
+ self.cfg_hacker = AnimateDiffInfV2V(p, self.prompt_scheduler)
56
+ self.cfg_hacker.hack(params)
57
+ self.cn_hacker = AnimateDiffControl(p, self.prompt_scheduler)
58
+ self.cn_hacker.hack(params)
59
+ update_infotext(p, params)
60
+ self.hacked = True
61
+ elif self.hacked:
62
+ self.cn_hacker.restore()
63
+ self.cfg_hacker.restore()
64
+ self.lora_hacker.restore()
65
+ motion_module.restore(p.sd_model)
66
+ self.hacked = False
67
+
68
+
69
+ def before_process_batch(self, p: StableDiffusionProcessing, params: AnimateDiffProcess, **kwargs):
70
+ if p.is_api and isinstance(params, dict): params = self.ad_params
71
+ if params.enable and isinstance(p, StableDiffusionProcessingImg2Img) and not hasattr(p, '_animatediff_i2i_batch'):
72
+ AnimateDiffI2VLatent().randomize(p, params)
73
+
74
+
75
+ def postprocess_batch_list(self, p: StableDiffusionProcessing, pp: PostprocessBatchListArgs, params: AnimateDiffProcess, **kwargs):
76
+ if p.is_api and isinstance(params, dict): params = self.ad_params
77
+ if params.enable:
78
+ self.prompt_scheduler.save_infotext_img(p)
79
+
80
+
81
+ def postprocess_image(self, p: StableDiffusionProcessing, pp: PostprocessImageArgs, params: AnimateDiffProcess, *args):
82
+ if p.is_api and isinstance(params, dict): params = self.ad_params
83
+ if params.enable and isinstance(p, StableDiffusionProcessingImg2Img) and hasattr(p, '_animatediff_paste_to_full'):
84
+ p.paste_to = p._animatediff_paste_to_full[p.batch_index]
85
+
86
+
87
+ def postprocess(self, p: StableDiffusionProcessing, res: Processed, params: AnimateDiffProcess):
88
+ if p.is_api and isinstance(params, dict): params = self.ad_params
89
+ if params.enable:
90
+ self.prompt_scheduler.save_infotext_txt(res)
91
+ self.cn_hacker.restore()
92
+ self.cfg_hacker.restore()
93
+ self.lora_hacker.restore()
94
+ motion_module.restore(p.sd_model)
95
+ self.hacked = False
96
+ AnimateDiffOutput().output(p, res, params)
97
+ logger.info("AnimateDiff process end.")
98
+
99
+
100
+ def on_ui_settings():
101
+ section = ("animatediff", "AnimateDiff")
102
+ s3_selection =("animatediff", "AnimateDiff AWS")
103
+ shared.opts.add_option(
104
+ "animatediff_model_path",
105
+ shared.OptionInfo(
106
+ None,
107
+ "Path to save AnimateDiff motion modules",
108
+ gr.Textbox,
109
+ section=section,
110
+ ),
111
+ )
112
+ shared.opts.add_option(
113
+ "animatediff_optimize_gif_palette",
114
+ shared.OptionInfo(
115
+ False,
116
+ "Calculate the optimal GIF palette, improves quality significantly, removes banding",
117
+ gr.Checkbox,
118
+ section=section
119
+ )
120
+ )
121
+ shared.opts.add_option(
122
+ "animatediff_optimize_gif_gifsicle",
123
+ shared.OptionInfo(
124
+ False,
125
+ "Optimize GIFs with gifsicle, reduces file size",
126
+ gr.Checkbox,
127
+ section=section
128
+ )
129
+ )
130
+ shared.opts.add_option(
131
+ key="animatediff_mp4_crf",
132
+ info=shared.OptionInfo(
133
+ default=23,
134
+ label="MP4 Quality (CRF)",
135
+ component=gr.Slider,
136
+ component_args={
137
+ "minimum": 0,
138
+ "maximum": 51,
139
+ "step": 1},
140
+ section=section
141
+ )
142
+ .link("docs", "https://trac.ffmpeg.org/wiki/Encode/H.264#crf")
143
+ .info("17 for best quality, up to 28 for smaller size")
144
+ )
145
+ shared.opts.add_option(
146
+ key="animatediff_mp4_preset",
147
+ info=shared.OptionInfo(
148
+ default="",
149
+ label="MP4 Encoding Preset",
150
+ component=gr.Dropdown,
151
+ component_args={"choices": ["", 'veryslow', 'slower', 'slow', 'medium', 'fast', 'faster', 'veryfast', 'superfast', 'ultrafast']},
152
+ section=section,
153
+ )
154
+ .link("docs", "https://trac.ffmpeg.org/wiki/Encode/H.264#Preset")
155
+ .info("encoding speed, use the slowest you can tolerate")
156
+ )
157
+ shared.opts.add_option(
158
+ key="animatediff_mp4_tune",
159
+ info=shared.OptionInfo(
160
+ default="",
161
+ label="MP4 Tune encoding for content type",
162
+ component=gr.Dropdown,
163
+ component_args={"choices": ["", "film", "animation", "grain"]},
164
+ section=section
165
+ )
166
+ .link("docs", "https://trac.ffmpeg.org/wiki/Encode/H.264#Tune")
167
+ .info("optimize for specific content types")
168
+ )
169
+ shared.opts.add_option(
170
+ "animatediff_webp_quality",
171
+ shared.OptionInfo(
172
+ 80,
173
+ "WebP Quality (if lossless=True, increases compression and CPU usage)",
174
+ gr.Slider,
175
+ {
176
+ "minimum": 1,
177
+ "maximum": 100,
178
+ "step": 1},
179
+ section=section
180
+ )
181
+ )
182
+ shared.opts.add_option(
183
+ "animatediff_webp_lossless",
184
+ shared.OptionInfo(
185
+ False,
186
+ "Save WebP in lossless format (highest quality, largest file size)",
187
+ gr.Checkbox,
188
+ section=section
189
+ )
190
+ )
191
+ shared.opts.add_option(
192
+ "animatediff_save_to_custom",
193
+ shared.OptionInfo(
194
+ False,
195
+ "Save frames to stable-diffusion-webui/outputs/{ txt|img }2img-images/AnimateDiff/{gif filename}/{date} "
196
+ "instead of stable-diffusion-webui/outputs/{ txt|img }2img-images/{date}/.",
197
+ gr.Checkbox,
198
+ section=section
199
+ )
200
+ )
201
+ shared.opts.add_option(
202
+ "animatediff_xformers",
203
+ shared.OptionInfo(
204
+ "Optimize attention layers with xformers",
205
+ "When you have --xformers in your command line args, you want AnimateDiff to ",
206
+ gr.Radio,
207
+ {"choices": ["Optimize attention layers with xformers",
208
+ "Optimize attention layers with sdp (torch >= 2.0.0 required)",
209
+ "Do not optimize attention layers"]},
210
+ section=section
211
+ )
212
+ )
213
+ shared.opts.add_option(
214
+ "animatediff_disable_lcm",
215
+ shared.OptionInfo(
216
+ False,
217
+ "Disable LCM",
218
+ gr.Checkbox,
219
+ section=section
220
+ )
221
+ )
222
+ shared.opts.add_option(
223
+ "animatediff_s3_enable",
224
+ shared.OptionInfo(
225
+ False,
226
+ "Enable to Store file in object storage that supports the s3 protocol",
227
+ gr.Checkbox,
228
+ section=s3_selection
229
+ )
230
+ )
231
+ shared.opts.add_option(
232
+ "animatediff_s3_host",
233
+ shared.OptionInfo(
234
+ None,
235
+ "S3 protocol host",
236
+ gr.Textbox,
237
+ section=s3_selection,
238
+ ),
239
+ )
240
+ shared.opts.add_option(
241
+ "animatediff_s3_port",
242
+ shared.OptionInfo(
243
+ None,
244
+ "S3 protocol port",
245
+ gr.Textbox,
246
+ section=s3_selection,
247
+ ),
248
+ )
249
+ shared.opts.add_option(
250
+ "animatediff_s3_access_key",
251
+ shared.OptionInfo(
252
+ None,
253
+ "S3 protocol access_key",
254
+ gr.Textbox,
255
+ section=s3_selection,
256
+ ),
257
+ )
258
+ shared.opts.add_option(
259
+ "animatediff_s3_secret_key",
260
+ shared.OptionInfo(
261
+ None,
262
+ "S3 protocol secret_key",
263
+ gr.Textbox,
264
+ section=s3_selection,
265
+ ),
266
+ )
267
+ shared.opts.add_option(
268
+ "animatediff_s3_storge_bucket",
269
+ shared.OptionInfo(
270
+ None,
271
+ "Bucket for file storage",
272
+ gr.Textbox,
273
+ section=s3_selection,
274
+ ),
275
+ )
276
+
277
+ script_callbacks.on_ui_settings(on_ui_settings)
278
+ script_callbacks.on_after_component(AnimateDiffUiGroup.on_after_component)
279
+ script_callbacks.on_before_ui(AnimateDiffUiGroup.on_before_ui)
extensions/sd-webui-animatediff/scripts/animatediff_cn.py ADDED
@@ -0,0 +1,641 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from types import MethodType
3
+ from typing import Optional
4
+
5
+ import os
6
+ import shutil
7
+ import cv2
8
+ import numpy as np
9
+ import torch
10
+ from tqdm import tqdm
11
+ from PIL import Image, ImageFilter, ImageOps
12
+ from modules import processing, shared, masking, images, devices
13
+ from modules.paths import data_path
14
+ from modules.processing import (StableDiffusionProcessing,
15
+ StableDiffusionProcessingImg2Img,
16
+ StableDiffusionProcessingTxt2Img)
17
+
18
+ from scripts.animatediff_logger import logger_animatediff as logger
19
+ from scripts.animatediff_ui import AnimateDiffProcess
20
+ from scripts.animatediff_prompt import AnimateDiffPromptSchedule
21
+ from scripts.animatediff_infotext import update_infotext
22
+ from scripts.animatediff_i2ibatch import animatediff_i2ibatch
23
+
24
+
25
+ class AnimateDiffControl:
26
+ original_processing_process_images_hijack = None
27
+ original_controlnet_main_entry = None
28
+ original_postprocess_batch = None
29
+
30
+ def __init__(self, p: StableDiffusionProcessing, prompt_scheduler: AnimateDiffPromptSchedule):
31
+ try:
32
+ from scripts.external_code import find_cn_script
33
+ self.cn_script = find_cn_script(p.scripts)
34
+ except:
35
+ self.cn_script = None
36
+ self.prompt_scheduler = prompt_scheduler
37
+
38
+
39
+ def hack_batchhijack(self, params: AnimateDiffProcess):
40
+ cn_script = self.cn_script
41
+ prompt_scheduler = self.prompt_scheduler
42
+
43
+ def get_input_frames():
44
+ if params.video_source is not None and params.video_source != '':
45
+ cap = cv2.VideoCapture(params.video_source)
46
+ frame_count = 0
47
+ tmp_frame_dir = Path(f'{data_path}/tmp/animatediff-frames/')
48
+ tmp_frame_dir.mkdir(parents=True, exist_ok=True)
49
+ while cap.isOpened():
50
+ ret, frame = cap.read()
51
+ if not ret:
52
+ break
53
+ cv2.imwrite(f"{tmp_frame_dir}/{frame_count}.png", frame)
54
+ frame_count += 1
55
+ cap.release()
56
+ return str(tmp_frame_dir)
57
+ elif params.video_path is not None and params.video_path != '':
58
+ return params.video_path
59
+ return ''
60
+
61
+ from scripts.batch_hijack import BatchHijack, instance
62
+ def hacked_processing_process_images_hijack(self, p: StableDiffusionProcessing, *args, **kwargs):
63
+ from scripts import external_code
64
+ from scripts.batch_hijack import InputMode
65
+
66
+ units = external_code.get_all_units_in_processing(p)
67
+ units = [unit for unit in units if getattr(unit, 'enabled', False)]
68
+
69
+ if len(units) > 0:
70
+ global_input_frames = get_input_frames()
71
+ for idx, unit in enumerate(units):
72
+ # i2i-batch mode
73
+ if getattr(p, '_animatediff_i2i_batch', None) and not unit.image:
74
+ unit.input_mode = InputMode.BATCH
75
+ # if no input given for this unit, use global input
76
+ if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH:
77
+ if not unit.batch_images:
78
+ assert global_input_frames, 'No input images found for ControlNet module'
79
+ unit.batch_images = global_input_frames
80
+ elif not unit.image:
81
+ try:
82
+ cn_script.choose_input_image(p, unit, idx)
83
+ except:
84
+ assert global_input_frames != '', 'No input images found for ControlNet module'
85
+ unit.batch_images = global_input_frames
86
+ unit.input_mode = InputMode.BATCH
87
+
88
+ if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH:
89
+ if 'inpaint' in unit.module:
90
+ images = shared.listfiles(f'{unit.batch_images}/image')
91
+ masks = shared.listfiles(f'{unit.batch_images}/mask')
92
+ assert len(images) == len(masks), 'Inpainting image mask count mismatch'
93
+ unit.batch_images = [{'image': images[i], 'mask': masks[i]} for i in range(len(images))]
94
+ else:
95
+ unit.batch_images = shared.listfiles(unit.batch_images)
96
+
97
+ unit_batch_list = [len(unit.batch_images) for unit in units
98
+ if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH]
99
+ if getattr(p, '_animatediff_i2i_batch', None):
100
+ unit_batch_list.append(len(p.init_images))
101
+
102
+ if len(unit_batch_list) > 0:
103
+ video_length = min(unit_batch_list)
104
+ # ensure that params.video_length <= video_length and params.batch_size <= video_length
105
+ if params.video_length > video_length:
106
+ params.video_length = video_length
107
+ if params.batch_size > video_length:
108
+ params.batch_size = video_length
109
+ if params.video_default:
110
+ params.video_length = video_length
111
+ p.batch_size = video_length
112
+ for unit in units:
113
+ if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH:
114
+ unit.batch_images = unit.batch_images[:params.video_length]
115
+
116
+ animatediff_i2ibatch.cap_init_image(p, params)
117
+ prompt_scheduler.parse_prompt(p)
118
+ update_infotext(p, params)
119
+ return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs)
120
+
121
+ if AnimateDiffControl.original_processing_process_images_hijack is not None:
122
+ logger.info('BatchHijack already hacked.')
123
+ return
124
+
125
+ AnimateDiffControl.original_processing_process_images_hijack = BatchHijack.processing_process_images_hijack
126
+ BatchHijack.processing_process_images_hijack = hacked_processing_process_images_hijack
127
+ processing.process_images_inner = instance.processing_process_images_hijack
128
+
129
+
130
+ def restore_batchhijack(self):
131
+ if AnimateDiffControl.original_processing_process_images_hijack is not None:
132
+ from scripts.batch_hijack import BatchHijack, instance
133
+ BatchHijack.processing_process_images_hijack = AnimateDiffControl.original_processing_process_images_hijack
134
+ AnimateDiffControl.original_processing_process_images_hijack = None
135
+ processing.process_images_inner = instance.processing_process_images_hijack
136
+
137
+
138
+ def hack_cn(self):
139
+ cn_script = self.cn_script
140
+
141
+
142
+ def hacked_main_entry(self, p: StableDiffusionProcessing):
143
+ from scripts import external_code, global_state, hook
144
+ from scripts.controlnet_lora import bind_control_lora
145
+ from scripts.adapter import Adapter, Adapter_light, StyleAdapter
146
+ from scripts.batch_hijack import InputMode
147
+ from scripts.controlnet_lllite import PlugableControlLLLite, clear_all_lllite
148
+ from scripts.controlmodel_ipadapter import (PlugableIPAdapter,
149
+ clear_all_ip_adapter)
150
+ from scripts.hook import ControlModelType, ControlParams, UnetHook
151
+ from scripts.logging import logger
152
+ from scripts.processor import model_free_preprocessors
153
+
154
+ # TODO: i2i-batch mode, what should I change?
155
+ def image_has_mask(input_image: np.ndarray) -> bool:
156
+ return (
157
+ input_image.ndim == 3 and
158
+ input_image.shape[2] == 4 and
159
+ np.max(input_image[:, :, 3]) > 127
160
+ )
161
+
162
+
163
+ def prepare_mask(
164
+ mask: Image.Image, p: processing.StableDiffusionProcessing
165
+ ) -> Image.Image:
166
+ mask = mask.convert("L")
167
+ if getattr(p, "inpainting_mask_invert", False):
168
+ mask = ImageOps.invert(mask)
169
+
170
+ if hasattr(p, 'mask_blur_x'):
171
+ if getattr(p, "mask_blur_x", 0) > 0:
172
+ np_mask = np.array(mask)
173
+ kernel_size = 2 * int(2.5 * p.mask_blur_x + 0.5) + 1
174
+ np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), p.mask_blur_x)
175
+ mask = Image.fromarray(np_mask)
176
+ if getattr(p, "mask_blur_y", 0) > 0:
177
+ np_mask = np.array(mask)
178
+ kernel_size = 2 * int(2.5 * p.mask_blur_y + 0.5) + 1
179
+ np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), p.mask_blur_y)
180
+ mask = Image.fromarray(np_mask)
181
+ else:
182
+ if getattr(p, "mask_blur", 0) > 0:
183
+ mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
184
+
185
+ return mask
186
+
187
+
188
+ def set_numpy_seed(p: processing.StableDiffusionProcessing) -> Optional[int]:
189
+ try:
190
+ tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0))
191
+ tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0))
192
+ seed = (tmp_seed + tmp_subseed) & 0xFFFFFFFF
193
+ np.random.seed(seed)
194
+ return seed
195
+ except Exception as e:
196
+ logger.warning(e)
197
+ logger.warning('Warning: Failed to use consistent random seed.')
198
+ return None
199
+
200
+ sd_ldm = p.sd_model
201
+ unet = sd_ldm.model.diffusion_model
202
+ self.noise_modifier = None
203
+
204
+ setattr(p, 'controlnet_control_loras', [])
205
+
206
+ if self.latest_network is not None:
207
+ # always restore (~0.05s)
208
+ self.latest_network.restore()
209
+
210
+ # always clear (~0.05s)
211
+ clear_all_lllite()
212
+ clear_all_ip_adapter()
213
+
214
+ self.enabled_units = cn_script.get_enabled_units(p)
215
+
216
+ if len(self.enabled_units) == 0:
217
+ self.latest_network = None
218
+ return
219
+
220
+ detected_maps = []
221
+ forward_params = []
222
+ post_processors = []
223
+
224
+ # cache stuff
225
+ if self.latest_model_hash != p.sd_model.sd_model_hash:
226
+ cn_script.clear_control_model_cache()
227
+
228
+ for idx, unit in enumerate(self.enabled_units):
229
+ unit.module = global_state.get_module_basename(unit.module)
230
+
231
+ # unload unused preproc
232
+ module_list = [unit.module for unit in self.enabled_units]
233
+ for key in self.unloadable:
234
+ if key not in module_list:
235
+ self.unloadable.get(key, lambda:None)()
236
+
237
+ self.latest_model_hash = p.sd_model.sd_model_hash
238
+ for idx, unit in enumerate(self.enabled_units):
239
+ cn_script.bound_check_params(unit)
240
+
241
+ resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
242
+ control_mode = external_code.control_mode_from_value(unit.control_mode)
243
+
244
+ if unit.module in model_free_preprocessors:
245
+ model_net = None
246
+ else:
247
+ model_net = cn_script.load_control_model(p, unet, unit.model)
248
+ model_net.reset()
249
+ if model_net is not None and getattr(devices, "fp8", False) and not isinstance(model_net, PlugableIPAdapter):
250
+ for _module in model_net.modules():
251
+ if isinstance(_module, (torch.nn.Conv2d, torch.nn.Linear)):
252
+ _module.to(torch.float8_e4m3fn)
253
+
254
+ if getattr(model_net, 'is_control_lora', False):
255
+ control_lora = model_net.control_model
256
+ bind_control_lora(unet, control_lora)
257
+ p.controlnet_control_loras.append(control_lora)
258
+
259
+ if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH:
260
+ input_images = []
261
+ for img in unit.batch_images:
262
+ unit.image = img
263
+ input_image, _ = cn_script.choose_input_image(p, unit, idx)
264
+ input_images.append(input_image)
265
+ else:
266
+ input_image, image_from_a1111 = cn_script.choose_input_image(p, unit, idx)
267
+ input_images = [input_image]
268
+
269
+ if image_from_a1111:
270
+ a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
271
+ if a1111_i2i_resize_mode is not None:
272
+ resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
273
+
274
+ for idx, input_image in enumerate(input_images):
275
+ a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None)
276
+ if a1111_mask_image and isinstance(a1111_mask_image, list):
277
+ a1111_mask_image = a1111_mask_image[idx]
278
+ if 'inpaint' in unit.module and not image_has_mask(input_image) and a1111_mask_image is not None:
279
+ a1111_mask = np.array(prepare_mask(a1111_mask_image, p))
280
+ if a1111_mask.ndim == 2:
281
+ if a1111_mask.shape[0] == input_image.shape[0]:
282
+ if a1111_mask.shape[1] == input_image.shape[1]:
283
+ input_image = np.concatenate([input_image[:, :, 0:3], a1111_mask[:, :, None]], axis=2)
284
+ a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
285
+ if a1111_i2i_resize_mode is not None:
286
+ resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
287
+
288
+ if 'reference' not in unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) \
289
+ and p.inpaint_full_res and a1111_mask_image is not None:
290
+ logger.debug("A1111 inpaint mask START")
291
+ input_image = [input_image[:, :, i] for i in range(input_image.shape[2])]
292
+ input_image = [Image.fromarray(x) for x in input_image]
293
+
294
+ mask = prepare_mask(a1111_mask_image, p)
295
+
296
+ crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding)
297
+ crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height)
298
+
299
+ input_image = [
300
+ images.resize_image(resize_mode.int_value(), i, mask.width, mask.height)
301
+ for i in input_image
302
+ ]
303
+
304
+ input_image = [x.crop(crop_region) for x in input_image]
305
+ input_image = [
306
+ images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height)
307
+ for x in input_image
308
+ ]
309
+
310
+ input_image = [np.asarray(x)[:, :, 0] for x in input_image]
311
+ input_image = np.stack(input_image, axis=2)
312
+ logger.debug("A1111 inpaint mask END")
313
+
314
+ # safe numpy
315
+ logger.debug("Safe numpy convertion START")
316
+ input_image = np.ascontiguousarray(input_image.copy()).copy()
317
+ logger.debug("Safe numpy convertion END")
318
+
319
+ input_images[idx] = input_image
320
+
321
+ if 'inpaint_only' == unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) and p.image_mask is not None:
322
+ logger.warning('A1111 inpaint and ControlNet inpaint duplicated. ControlNet support enabled.')
323
+ unit.module = 'inpaint'
324
+
325
+ logger.info(f"Loading preprocessor: {unit.module}")
326
+ preprocessor = self.preprocessor[unit.module]
327
+
328
+ high_res_fix = isinstance(p, StableDiffusionProcessingTxt2Img) and getattr(p, 'enable_hr', False)
329
+
330
+ h = (p.height // 8) * 8
331
+ w = (p.width // 8) * 8
332
+
333
+ if high_res_fix:
334
+ if p.hr_resize_x == 0 and p.hr_resize_y == 0:
335
+ hr_y = int(p.height * p.hr_scale)
336
+ hr_x = int(p.width * p.hr_scale)
337
+ else:
338
+ hr_y, hr_x = p.hr_resize_y, p.hr_resize_x
339
+ hr_y = (hr_y // 8) * 8
340
+ hr_x = (hr_x // 8) * 8
341
+ else:
342
+ hr_y = h
343
+ hr_x = w
344
+
345
+ if unit.module == 'inpaint_only+lama' and resize_mode == external_code.ResizeMode.OUTER_FIT:
346
+ # inpaint_only+lama is special and required outpaint fix
347
+ for idx, input_image in enumerate(input_images):
348
+ _, input_image = cn_script.detectmap_proc(input_image, unit.module, resize_mode, hr_y, hr_x)
349
+ input_images[idx] = input_image
350
+
351
+ control_model_type = ControlModelType.ControlNet
352
+ global_average_pooling = False
353
+
354
+ if 'reference' in unit.module:
355
+ control_model_type = ControlModelType.AttentionInjection
356
+ elif 'revision' in unit.module:
357
+ control_model_type = ControlModelType.ReVision
358
+ elif hasattr(model_net, 'control_model') and (isinstance(model_net.control_model, Adapter) or isinstance(model_net.control_model, Adapter_light)):
359
+ control_model_type = ControlModelType.T2I_Adapter
360
+ elif hasattr(model_net, 'control_model') and isinstance(model_net.control_model, StyleAdapter):
361
+ control_model_type = ControlModelType.T2I_StyleAdapter
362
+ elif isinstance(model_net, PlugableIPAdapter):
363
+ control_model_type = ControlModelType.IPAdapter
364
+ elif isinstance(model_net, PlugableControlLLLite):
365
+ control_model_type = ControlModelType.Controlllite
366
+
367
+ if control_model_type is ControlModelType.ControlNet:
368
+ global_average_pooling = model_net.control_model.global_average_pooling
369
+
370
+ preprocessor_resolution = unit.processor_res
371
+ if unit.pixel_perfect:
372
+ preprocessor_resolution = external_code.pixel_perfect_resolution(
373
+ input_images[0],
374
+ target_H=h,
375
+ target_W=w,
376
+ resize_mode=resize_mode
377
+ )
378
+
379
+ logger.info(f'preprocessor resolution = {preprocessor_resolution}')
380
+ # Preprocessor result may depend on numpy random operations, use the
381
+ # random seed in `StableDiffusionProcessing` to make the
382
+ # preprocessor result reproducable.
383
+ # Currently following preprocessors use numpy random:
384
+ # - shuffle
385
+ seed = set_numpy_seed(p)
386
+ logger.debug(f"Use numpy seed {seed}.")
387
+
388
+ controls = []
389
+ hr_controls = []
390
+ controls_ipadapter = {'hidden_states': [], 'image_embeds': []}
391
+ hr_controls_ipadapter = {'hidden_states': [], 'image_embeds': []}
392
+ for idx, input_image in tqdm(enumerate(input_images), total=len(input_images)):
393
+ detected_map, is_image = preprocessor(
394
+ input_image,
395
+ res=preprocessor_resolution,
396
+ thr_a=unit.threshold_a,
397
+ thr_b=unit.threshold_b,
398
+ )
399
+
400
+ if high_res_fix:
401
+ if is_image:
402
+ hr_control, hr_detected_map = cn_script.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x)
403
+ detected_maps.append((hr_detected_map, unit.module))
404
+ else:
405
+ hr_control = detected_map
406
+ else:
407
+ hr_control = None
408
+
409
+ if is_image:
410
+ control, detected_map = cn_script.detectmap_proc(detected_map, unit.module, resize_mode, h, w)
411
+ detected_maps.append((detected_map, unit.module))
412
+ else:
413
+ control = detected_map
414
+ detected_maps.append((input_image, unit.module))
415
+
416
+ if control_model_type == ControlModelType.T2I_StyleAdapter:
417
+ control = control['last_hidden_state']
418
+
419
+ if control_model_type == ControlModelType.ReVision:
420
+ control = control['image_embeds']
421
+
422
+ if control_model_type == ControlModelType.IPAdapter:
423
+ if model_net.is_plus:
424
+ controls_ipadapter['hidden_states'].append(control['hidden_states'][-2].cpu())
425
+ else:
426
+ controls_ipadapter['image_embeds'].append(control['image_embeds'].cpu())
427
+ if hr_control is not None:
428
+ if model_net.is_plus:
429
+ hr_controls_ipadapter['hidden_states'].append(hr_control['hidden_states'][-2].cpu())
430
+ else:
431
+ hr_controls_ipadapter['image_embeds'].append(hr_control['image_embeds'].cpu())
432
+ else:
433
+ hr_controls_ipadapter = None
434
+ hr_controls = None
435
+ else:
436
+ controls.append(control.cpu())
437
+ if hr_control is not None:
438
+ hr_controls.append(hr_control.cpu())
439
+ else:
440
+ hr_controls = None
441
+
442
+ if control_model_type == ControlModelType.IPAdapter:
443
+ ipadapter_key = 'hidden_states' if model_net.is_plus else 'image_embeds'
444
+ controls = {ipadapter_key: torch.cat(controls_ipadapter[ipadapter_key], dim=0)}
445
+ if controls[ipadapter_key].shape[0] > 1:
446
+ controls[ipadapter_key] = torch.cat([controls[ipadapter_key], controls[ipadapter_key]], dim=0)
447
+ if model_net.is_plus:
448
+ controls[ipadapter_key] = [controls[ipadapter_key], None]
449
+ if hr_controls_ipadapter is not None:
450
+ hr_controls = {ipadapter_key: torch.cat(hr_controls_ipadapter[ipadapter_key], dim=0)}
451
+ if hr_controls[ipadapter_key].shape[0] > 1:
452
+ hr_controls[ipadapter_key] = torch.cat([hr_controls[ipadapter_key], hr_controls[ipadapter_key]], dim=0)
453
+ if model_net.is_plus:
454
+ hr_controls[ipadapter_key] = [hr_controls[ipadapter_key], None]
455
+ else:
456
+ controls = torch.cat(controls, dim=0)
457
+ if controls.shape[0] > 1:
458
+ controls = torch.cat([controls, controls], dim=0)
459
+ if hr_controls is not None:
460
+ hr_controls = torch.cat(hr_controls, dim=0)
461
+ if hr_controls.shape[0] > 1:
462
+ hr_controls = torch.cat([hr_controls, hr_controls], dim=0)
463
+
464
+ preprocessor_dict = dict(
465
+ name=unit.module,
466
+ preprocessor_resolution=preprocessor_resolution,
467
+ threshold_a=unit.threshold_a,
468
+ threshold_b=unit.threshold_b
469
+ )
470
+
471
+ forward_param = ControlParams(
472
+ control_model=model_net,
473
+ preprocessor=preprocessor_dict,
474
+ hint_cond=controls,
475
+ weight=unit.weight,
476
+ guidance_stopped=False,
477
+ start_guidance_percent=unit.guidance_start,
478
+ stop_guidance_percent=unit.guidance_end,
479
+ advanced_weighting=None,
480
+ control_model_type=control_model_type,
481
+ global_average_pooling=global_average_pooling,
482
+ hr_hint_cond=hr_controls,
483
+ soft_injection=control_mode != external_code.ControlMode.BALANCED,
484
+ cfg_injection=control_mode == external_code.ControlMode.CONTROL,
485
+ )
486
+ forward_params.append(forward_param)
487
+
488
+ unit_is_batch = getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH
489
+ if 'inpaint_only' in unit.module:
490
+ final_inpaint_raws = []
491
+ final_inpaint_masks = []
492
+ for i in range(len(controls)):
493
+ final_inpaint_feed = hr_controls[i] if hr_controls is not None else controls[i]
494
+ final_inpaint_feed = final_inpaint_feed.detach().cpu().numpy()
495
+ final_inpaint_feed = np.ascontiguousarray(final_inpaint_feed).copy()
496
+ final_inpaint_mask = final_inpaint_feed[0, 3, :, :].astype(np.float32)
497
+ final_inpaint_raw = final_inpaint_feed[0, :3].astype(np.float32)
498
+ sigma = shared.opts.data.get("control_net_inpaint_blur_sigma", 7)
499
+ final_inpaint_mask = cv2.dilate(final_inpaint_mask, np.ones((sigma, sigma), dtype=np.uint8))
500
+ final_inpaint_mask = cv2.blur(final_inpaint_mask, (sigma, sigma))[None]
501
+ _, Hmask, Wmask = final_inpaint_mask.shape
502
+ final_inpaint_raw = torch.from_numpy(np.ascontiguousarray(final_inpaint_raw).copy())
503
+ final_inpaint_mask = torch.from_numpy(np.ascontiguousarray(final_inpaint_mask).copy())
504
+ final_inpaint_raws.append(final_inpaint_raw)
505
+ final_inpaint_masks.append(final_inpaint_mask)
506
+
507
+ def inpaint_only_post_processing(x, i):
508
+ _, H, W = x.shape
509
+ if Hmask != H or Wmask != W:
510
+ logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
511
+ return x
512
+ idx = i if unit_is_batch else 0
513
+ r = final_inpaint_raw[idx].to(x.dtype).to(x.device)
514
+ m = final_inpaint_mask[idx].to(x.dtype).to(x.device)
515
+ y = m * x.clip(0, 1) + (1 - m) * r
516
+ y = y.clip(0, 1)
517
+ return y
518
+
519
+ post_processors.append(inpaint_only_post_processing)
520
+
521
+ if 'recolor' in unit.module:
522
+ final_feeds = []
523
+ for i in range(len(controls)):
524
+ final_feed = hr_control if hr_control is not None else control
525
+ final_feed = final_feed.detach().cpu().numpy()
526
+ final_feed = np.ascontiguousarray(final_feed).copy()
527
+ final_feed = final_feed[0, 0, :, :].astype(np.float32)
528
+ final_feed = (final_feed * 255).clip(0, 255).astype(np.uint8)
529
+ Hfeed, Wfeed = final_feed.shape
530
+ final_feeds.append(final_feed)
531
+
532
+ if 'luminance' in unit.module:
533
+
534
+ def recolor_luminance_post_processing(x, i):
535
+ C, H, W = x.shape
536
+ if Hfeed != H or Wfeed != W or C != 3:
537
+ logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
538
+ return x
539
+ h = x.detach().cpu().numpy().transpose((1, 2, 0))
540
+ h = (h * 255).clip(0, 255).astype(np.uint8)
541
+ h = cv2.cvtColor(h, cv2.COLOR_RGB2LAB)
542
+ h[:, :, 0] = final_feed[i if unit_is_batch else 0]
543
+ h = cv2.cvtColor(h, cv2.COLOR_LAB2RGB)
544
+ h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
545
+ y = torch.from_numpy(h).clip(0, 1).to(x)
546
+ return y
547
+
548
+ post_processors.append(recolor_luminance_post_processing)
549
+
550
+ if 'intensity' in unit.module:
551
+
552
+ def recolor_intensity_post_processing(x, i):
553
+ C, H, W = x.shape
554
+ if Hfeed != H or Wfeed != W or C != 3:
555
+ logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
556
+ return x
557
+ h = x.detach().cpu().numpy().transpose((1, 2, 0))
558
+ h = (h * 255).clip(0, 255).astype(np.uint8)
559
+ h = cv2.cvtColor(h, cv2.COLOR_RGB2HSV)
560
+ h[:, :, 2] = final_feed[i if unit_is_batch else 0]
561
+ h = cv2.cvtColor(h, cv2.COLOR_HSV2RGB)
562
+ h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
563
+ y = torch.from_numpy(h).clip(0, 1).to(x)
564
+ return y
565
+
566
+ post_processors.append(recolor_intensity_post_processing)
567
+
568
+ if '+lama' in unit.module:
569
+ forward_param.used_hint_cond_latent = hook.UnetHook.call_vae_using_process(p, control)
570
+ self.noise_modifier = forward_param.used_hint_cond_latent
571
+
572
+ del model_net
573
+
574
+ is_low_vram = any(unit.low_vram for unit in self.enabled_units)
575
+
576
+ self.latest_network = UnetHook(lowvram=is_low_vram)
577
+ self.latest_network.hook(model=unet, sd_ldm=sd_ldm, control_params=forward_params, process=p)
578
+
579
+ for param in forward_params:
580
+ if param.control_model_type == ControlModelType.IPAdapter:
581
+ param.control_model.hook(
582
+ model=unet,
583
+ clip_vision_output=param.hint_cond,
584
+ weight=param.weight,
585
+ dtype=torch.float32,
586
+ start=param.start_guidance_percent,
587
+ end=param.stop_guidance_percent
588
+ )
589
+ if param.control_model_type == ControlModelType.Controlllite:
590
+ param.control_model.hook(
591
+ model=unet,
592
+ cond=param.hint_cond,
593
+ weight=param.weight,
594
+ start=param.start_guidance_percent,
595
+ end=param.stop_guidance_percent
596
+ )
597
+
598
+ self.detected_map = detected_maps
599
+ self.post_processors = post_processors
600
+
601
+ if os.path.exists(f'{data_path}/tmp/animatediff-frames/'):
602
+ shutil.rmtree(f'{data_path}/tmp/animatediff-frames/')
603
+
604
+ def hacked_postprocess_batch(self, p, *args, **kwargs):
605
+ images = kwargs.get('images', [])
606
+ for post_processor in self.post_processors:
607
+ for i in range(len(images)):
608
+ images[i] = post_processor(images[i], i)
609
+ return
610
+
611
+ if AnimateDiffControl.original_controlnet_main_entry is not None:
612
+ logger.info('ControlNet Main Entry already hacked.')
613
+ return
614
+
615
+ AnimateDiffControl.original_controlnet_main_entry = self.cn_script.controlnet_main_entry
616
+ AnimateDiffControl.original_postprocess_batch = self.cn_script.postprocess_batch
617
+ self.cn_script.controlnet_main_entry = MethodType(hacked_main_entry, self.cn_script)
618
+ self.cn_script.postprocess_batch = MethodType(hacked_postprocess_batch, self.cn_script)
619
+
620
+
621
+ def restore_cn(self):
622
+ if AnimateDiffControl.original_controlnet_main_entry is not None:
623
+ self.cn_script.controlnet_main_entry = AnimateDiffControl.original_controlnet_main_entry
624
+ AnimateDiffControl.original_controlnet_main_entry = None
625
+ if AnimateDiffControl.original_postprocess_batch is not None:
626
+ self.cn_script.postprocess_batch = AnimateDiffControl.original_postprocess_batch
627
+ AnimateDiffControl.original_postprocess_batch = None
628
+
629
+
630
+ def hack(self, params: AnimateDiffProcess):
631
+ if self.cn_script is not None:
632
+ logger.info(f"Hacking ControlNet.")
633
+ self.hack_batchhijack(params)
634
+ self.hack_cn()
635
+
636
+
637
+ def restore(self):
638
+ if self.cn_script is not None:
639
+ logger.info(f"Restoring ControlNet.")
640
+ self.restore_batchhijack()
641
+ self.restore_cn()
extensions/sd-webui-animatediff/scripts/animatediff_i2ibatch.py ADDED
@@ -0,0 +1,309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from types import MethodType
3
+
4
+ import os
5
+ import cv2
6
+ import numpy as np
7
+ import torch
8
+ import hashlib
9
+ from PIL import Image, ImageOps, UnidentifiedImageError
10
+ from modules import processing, shared, scripts, img2img, devices, masking, sd_samplers, images
11
+ from modules.processing import (StableDiffusionProcessingImg2Img,
12
+ process_images,
13
+ create_binary_mask,
14
+ create_random_tensors,
15
+ images_tensor_to_samples,
16
+ setup_color_correction,
17
+ opt_f)
18
+ from modules.shared import opts
19
+ from modules.sd_samplers_common import images_tensor_to_samples, approximation_indexes
20
+
21
+ from scripts.animatediff_logger import logger_animatediff as logger
22
+
23
+
24
+ class AnimateDiffI2IBatch:
25
+ original_img2img_process_batch = None
26
+
27
+ def hack(self):
28
+ # TODO: PR this hack to A1111
29
+ if AnimateDiffI2IBatch.original_img2img_process_batch is not None:
30
+ logger.info("Hacking i2i-batch is already done.")
31
+ return
32
+
33
+ logger.info("Hacking i2i-batch.")
34
+ AnimateDiffI2IBatch.original_img2img_process_batch = img2img.process_batch
35
+ original_img2img_process_batch = AnimateDiffI2IBatch.original_img2img_process_batch
36
+
37
+ def hacked_i2i_init(self, all_prompts, all_seeds, all_subseeds): # only hack this when i2i-batch with batch mask
38
+ self.image_cfg_scale: float = self.image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
39
+
40
+ self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
41
+ crop_regions = []
42
+ paste_to = []
43
+ masks_for_overlay = []
44
+
45
+ image_masks = self.image_mask
46
+
47
+ for idx, image_mask in enumerate(image_masks):
48
+ # image_mask is passed in as RGBA by Gradio to support alpha masks,
49
+ # but we still want to support binary masks.
50
+ image_mask = create_binary_mask(image_mask)
51
+
52
+ if self.inpainting_mask_invert:
53
+ image_mask = ImageOps.invert(image_mask)
54
+
55
+ if self.mask_blur_x > 0:
56
+ np_mask = np.array(image_mask)
57
+ kernel_size = 2 * int(2.5 * self.mask_blur_x + 0.5) + 1
58
+ np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x)
59
+ image_mask = Image.fromarray(np_mask)
60
+
61
+ if self.mask_blur_y > 0:
62
+ np_mask = np.array(image_mask)
63
+ kernel_size = 2 * int(2.5 * self.mask_blur_y + 0.5) + 1
64
+ np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
65
+ image_mask = Image.fromarray(np_mask)
66
+
67
+ if self.inpaint_full_res:
68
+ masks_for_overlay.append(image_mask)
69
+ mask = image_mask.convert('L')
70
+ crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
71
+ crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
72
+ crop_regions.append(crop_region)
73
+ x1, y1, x2, y2 = crop_region
74
+
75
+ mask = mask.crop(crop_region)
76
+ image_mask = images.resize_image(2, mask, self.width, self.height)
77
+ paste_to.append((x1, y1, x2-x1, y2-y1))
78
+ else:
79
+ image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
80
+ np_mask = np.array(image_mask)
81
+ np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
82
+ masks_for_overlay.append(Image.fromarray(np_mask))
83
+
84
+ image_masks[idx] = image_mask
85
+
86
+ self.mask_for_overlay = masks_for_overlay[0] # only for saving purpose
87
+ if paste_to:
88
+ self.paste_to = paste_to[0]
89
+ self._animatediff_paste_to_full = paste_to
90
+
91
+ self.overlay_images = []
92
+ add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
93
+ if add_color_corrections:
94
+ self.color_corrections = []
95
+ imgs = []
96
+ for idx, img in enumerate(self.init_images):
97
+ latent_mask = (self.latent_mask[idx] if isinstance(self.latent_mask, list) else self.latent_mask) if self.latent_mask is not None else image_masks[idx]
98
+ # Save init image
99
+ if opts.save_init_img:
100
+ self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
101
+ images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)
102
+
103
+ image = images.flatten(img, opts.img2img_background_color)
104
+
105
+ if not crop_regions and self.resize_mode != 3:
106
+ image = images.resize_image(self.resize_mode, image, self.width, self.height)
107
+
108
+ if image_masks:
109
+ image_masked = Image.new('RGBa', (image.width, image.height))
110
+ image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(masks_for_overlay[idx].convert('L')))
111
+
112
+ self.overlay_images.append(image_masked.convert('RGBA'))
113
+
114
+ # crop_region is not None if we are doing inpaint full res
115
+ if crop_regions:
116
+ image = image.crop(crop_regions[idx])
117
+ image = images.resize_image(2, image, self.width, self.height)
118
+
119
+ if image_masks:
120
+ if self.inpainting_fill != 1:
121
+ image = masking.fill(image, latent_mask)
122
+
123
+ if add_color_corrections:
124
+ self.color_corrections.append(setup_color_correction(image))
125
+
126
+ image = np.array(image).astype(np.float32) / 255.0
127
+ image = np.moveaxis(image, 2, 0)
128
+
129
+ imgs.append(image)
130
+
131
+ if len(imgs) == 1:
132
+ batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
133
+ if self.overlay_images is not None:
134
+ self.overlay_images = self.overlay_images * self.batch_size
135
+
136
+ if self.color_corrections is not None and len(self.color_corrections) == 1:
137
+ self.color_corrections = self.color_corrections * self.batch_size
138
+
139
+ elif len(imgs) <= self.batch_size:
140
+ self.batch_size = len(imgs)
141
+ batch_images = np.array(imgs)
142
+ else:
143
+ raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
144
+
145
+ image = torch.from_numpy(batch_images)
146
+ image = image.to(shared.device, dtype=devices.dtype_vae)
147
+
148
+ if opts.sd_vae_encode_method != 'Full':
149
+ self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method
150
+
151
+ self.init_latent = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
152
+ devices.torch_gc()
153
+
154
+ if self.resize_mode == 3:
155
+ self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
156
+
157
+ if image_masks is not None:
158
+ def process_letmask(init_mask):
159
+ # init_mask = latent_mask
160
+ latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
161
+ latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
162
+ latmask = latmask[0]
163
+ latmask = np.around(latmask)
164
+ return np.tile(latmask[None], (4, 1, 1))
165
+
166
+ if self.latent_mask is not None and not isinstance(self.latent_mask, list):
167
+ latmask = process_letmask(self.latent_mask)
168
+ else:
169
+ if isinstance(self.latent_mask, list):
170
+ latmask = [process_letmask(x) for x in self.latent_mask]
171
+ else:
172
+ latmask = [process_letmask(x) for x in image_masks]
173
+ latmask = np.stack(latmask, axis=0)
174
+
175
+ self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
176
+ self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
177
+
178
+ # this needs to be fixed to be done in sample() using actual seeds for batches
179
+ if self.inpainting_fill == 2:
180
+ self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
181
+ elif self.inpainting_fill == 3:
182
+ self.init_latent = self.init_latent * self.mask
183
+
184
+ self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_masks) # let's ignore this image_masks which is related to inpaint model with different arch
185
+
186
+ def hacked_img2img_process_batch_hijack(
187
+ p: StableDiffusionProcessingImg2Img, input_dir: str, output_dir: str, inpaint_mask_dir: str,
188
+ args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None):
189
+ if p.scripts:
190
+ for script in p.scripts.alwayson_scripts:
191
+ if script.title().lower() == "animatediff":
192
+ ad_arg = p.script_args[script.args_from]
193
+ ad_enabled = ad_arg.get('enable', False) if isinstance(ad_arg, dict) else getattr(ad_arg, 'enable', False)
194
+ if ad_enabled:
195
+ p._animatediff_i2i_batch = 1 # i2i-batch mode, ordinary
196
+
197
+ if not hasattr(p, '_animatediff_i2i_batch'):
198
+ return original_img2img_process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale, scale_by, use_png_info, png_info_props, png_info_dir)
199
+ output_dir = output_dir.strip()
200
+ processing.fix_seed(p)
201
+
202
+ images = list(shared.walk_files(input_dir, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff")))
203
+
204
+ is_inpaint_batch = False
205
+ if inpaint_mask_dir:
206
+ inpaint_masks = shared.listfiles(inpaint_mask_dir)
207
+ is_inpaint_batch = bool(inpaint_masks)
208
+
209
+ if is_inpaint_batch:
210
+ assert len(inpaint_masks) == 1 or len(inpaint_masks) == len(images), 'The number of masks must be 1 or equal to the number of images.'
211
+ logger.info(f"\n[i2i batch] Inpaint batch is enabled. {len(inpaint_masks)} masks found.")
212
+ if len(inpaint_masks) > 1: # batch mask
213
+ p.init = MethodType(hacked_i2i_init, p)
214
+
215
+ logger.info(f"[i2i batch] Will process {len(images)} images, creating {p.n_iter} new videos.")
216
+
217
+ # extract "default" params to use in case getting png info fails
218
+ prompt = p.prompt
219
+ negative_prompt = p.negative_prompt
220
+ seed = p.seed
221
+ cfg_scale = p.cfg_scale
222
+ sampler_name = p.sampler_name
223
+ steps = p.steps
224
+ frame_images = []
225
+ frame_masks = []
226
+
227
+ for i, image in enumerate(images):
228
+
229
+ try:
230
+ img = Image.open(image)
231
+ except UnidentifiedImageError as e:
232
+ print(e)
233
+ continue
234
+ # Use the EXIF orientation of photos taken by smartphones.
235
+ img = ImageOps.exif_transpose(img)
236
+
237
+ if to_scale:
238
+ p.width = int(img.width * scale_by)
239
+ p.height = int(img.height * scale_by)
240
+
241
+ frame_images.append(img)
242
+
243
+ image_path = Path(image)
244
+ if is_inpaint_batch:
245
+ if len(inpaint_masks) == 1:
246
+ mask_image_path = inpaint_masks[0]
247
+ p.image_mask = Image.open(mask_image_path)
248
+ else:
249
+ # try to find corresponding mask for an image using index matching
250
+ mask_image_path = inpaint_masks[i]
251
+ frame_masks.append(Image.open(mask_image_path))
252
+
253
+ mask_image = Image.open(mask_image_path)
254
+ p.image_mask = mask_image
255
+
256
+ if use_png_info:
257
+ try:
258
+ info_img = frame_images[0]
259
+ if png_info_dir:
260
+ info_img_path = os.path.join(png_info_dir, os.path.basename(image))
261
+ info_img = Image.open(info_img_path)
262
+ from modules import images as imgutil
263
+ from modules.generation_parameters_copypaste import parse_generation_parameters
264
+ geninfo, _ = imgutil.read_info_from_image(info_img)
265
+ parsed_parameters = parse_generation_parameters(geninfo)
266
+ parsed_parameters = {k: v for k, v in parsed_parameters.items() if k in (png_info_props or {})}
267
+ except Exception:
268
+ parsed_parameters = {}
269
+
270
+ p.prompt = prompt + (" " + parsed_parameters["Prompt"] if "Prompt" in parsed_parameters else "")
271
+ p.negative_prompt = negative_prompt + (" " + parsed_parameters["Negative prompt"] if "Negative prompt" in parsed_parameters else "")
272
+ p.seed = int(parsed_parameters.get("Seed", seed))
273
+ p.cfg_scale = float(parsed_parameters.get("CFG scale", cfg_scale))
274
+ p.sampler_name = parsed_parameters.get("Sampler", sampler_name)
275
+ p.steps = int(parsed_parameters.get("Steps", steps))
276
+
277
+ p.init_images = frame_images
278
+ if len(frame_masks) > 0:
279
+ p.image_mask = frame_masks
280
+
281
+ proc = scripts.scripts_img2img.run(p, *args) # we should not support this, but just leave it here
282
+ if proc is None:
283
+ if output_dir:
284
+ p.outpath_samples = output_dir
285
+ p.override_settings['save_to_dirs'] = False
286
+ if p.n_iter > 1 or p.batch_size > 1:
287
+ p.override_settings['samples_filename_pattern'] = f'{image_path.stem}-[generation_number]'
288
+ else:
289
+ p.override_settings['samples_filename_pattern'] = f'{image_path.stem}'
290
+ return process_images(p)
291
+ else:
292
+ logger.warn("Warning: you are using an unsupported external script. AnimateDiff may not work properly.")
293
+
294
+ img2img.process_batch = hacked_img2img_process_batch_hijack
295
+
296
+
297
+ def cap_init_image(self, p: StableDiffusionProcessingImg2Img, params):
298
+ if params.enable and isinstance(p, StableDiffusionProcessingImg2Img) and hasattr(p, '_animatediff_i2i_batch'):
299
+ if len(p.init_images) > params.video_length:
300
+ p.init_images = p.init_images[:params.video_length]
301
+ if p.image_mask and isinstance(p.image_mask, list) and len(p.image_mask) > params.video_length:
302
+ p.image_mask = p.image_mask[:params.video_length]
303
+ if len(p.init_images) < params.video_length:
304
+ params.video_length = len(p.init_images)
305
+ if len(p.init_images) < params.batch_size:
306
+ params.batch_size = len(p.init_images)
307
+
308
+
309
+ animatediff_i2ibatch = AnimateDiffI2IBatch()
extensions/sd-webui-animatediff/scripts/animatediff_infotext.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from modules.paths import data_path
4
+ from modules.processing import StableDiffusionProcessing, StableDiffusionProcessingImg2Img
5
+
6
+ from scripts.animatediff_ui import AnimateDiffProcess
7
+ from scripts.animatediff_logger import logger_animatediff as logger
8
+
9
+
10
+ def update_infotext(p: StableDiffusionProcessing, params: AnimateDiffProcess):
11
+ if p.extra_generation_params is not None:
12
+ p.extra_generation_params["AnimateDiff"] = params.get_dict(isinstance(p, StableDiffusionProcessingImg2Img))
13
+
14
+
15
+ def write_params_txt(info: str):
16
+ with open(os.path.join(data_path, "params.txt"), "w", encoding="utf8") as file:
17
+ file.write(info)
18
+
19
+
20
+
21
+ def infotext_pasted(infotext, results):
22
+ for k, v in results.items():
23
+ if not k.startswith("AnimateDiff"):
24
+ continue
25
+
26
+ assert isinstance(v, str), f"Expect string but got {v}."
27
+ try:
28
+ for items in v.split(', '):
29
+ field, value = items.split(': ')
30
+ results[f"AnimateDiff {field}"] = value
31
+ except Exception:
32
+ logger.warn(
33
+ f"Failed to parse infotext, legacy format infotext is no longer supported:\n{v}"
34
+ )
35
+ break
extensions/sd-webui-animatediff/scripts/animatediff_infv2v.py ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ import numpy as np
4
+ import torch
5
+
6
+ from modules import prompt_parser, devices, sd_samplers_common, shared
7
+ from modules.shared import opts, state
8
+ from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
9
+ from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
10
+ from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
11
+ from modules.sd_samplers_cfg_denoiser import CFGDenoiser, catenate_conds, subscript_cond, pad_cond
12
+
13
+ from scripts.animatediff_logger import logger_animatediff as logger
14
+ from scripts.animatediff_ui import AnimateDiffProcess
15
+ from scripts.animatediff_prompt import AnimateDiffPromptSchedule
16
+
17
+
18
+ class AnimateDiffInfV2V:
19
+ cfg_original_forward = None
20
+
21
+ def __init__(self, p, prompt_scheduler: AnimateDiffPromptSchedule):
22
+ try:
23
+ from scripts.external_code import find_cn_script
24
+ self.cn_script = find_cn_script(p.scripts)
25
+ except:
26
+ self.cn_script = None
27
+ self.prompt_scheduler = prompt_scheduler
28
+
29
+
30
+ # Returns fraction that has denominator that is a power of 2
31
+ @staticmethod
32
+ def ordered_halving(val):
33
+ # get binary value, padded with 0s for 64 bits
34
+ bin_str = f"{val:064b}"
35
+ # flip binary value, padding included
36
+ bin_flip = bin_str[::-1]
37
+ # convert binary to int
38
+ as_int = int(bin_flip, 2)
39
+ # divide by 1 << 64, equivalent to 2**64, or 18446744073709551616,
40
+ # or b10000000000000000000000000000000000000000000000000000000000000000 (1 with 64 zero's)
41
+ final = as_int / (1 << 64)
42
+ return final
43
+
44
+
45
+ # Generator that returns lists of latent indeces to diffuse on
46
+ @staticmethod
47
+ def uniform(
48
+ step: int = ...,
49
+ video_length: int = 0,
50
+ batch_size: int = 16,
51
+ stride: int = 1,
52
+ overlap: int = 4,
53
+ loop_setting: str = 'R-P',
54
+ ):
55
+ if video_length <= batch_size:
56
+ yield list(range(batch_size))
57
+ return
58
+
59
+ closed_loop = (loop_setting == 'A')
60
+ stride = min(stride, int(np.ceil(np.log2(video_length / batch_size))) + 1)
61
+
62
+ for context_step in 1 << np.arange(stride):
63
+ pad = int(round(video_length * AnimateDiffInfV2V.ordered_halving(step)))
64
+ both_close_loop = False
65
+ for j in range(
66
+ int(AnimateDiffInfV2V.ordered_halving(step) * context_step) + pad,
67
+ video_length + pad + (0 if closed_loop else -overlap),
68
+ (batch_size * context_step - overlap),
69
+ ):
70
+ if loop_setting == 'N' and context_step == 1:
71
+ current_context = [e % video_length for e in range(j, j + batch_size * context_step, context_step)]
72
+ first_context = [e % video_length for e in range(0, batch_size * context_step, context_step)]
73
+ last_context = [e % video_length for e in range(video_length - batch_size * context_step, video_length, context_step)]
74
+ def get_unsorted_index(lst):
75
+ for i in range(1, len(lst)):
76
+ if lst[i] < lst[i-1]:
77
+ return i
78
+ return None
79
+ unsorted_index = get_unsorted_index(current_context)
80
+ if unsorted_index is None:
81
+ yield current_context
82
+ elif both_close_loop: # last and this context are close loop
83
+ both_close_loop = False
84
+ yield first_context
85
+ elif unsorted_index < batch_size - overlap: # only this context is close loop
86
+ yield last_context
87
+ yield first_context
88
+ else: # this and next context are close loop
89
+ both_close_loop = True
90
+ yield last_context
91
+ else:
92
+ yield [e % video_length for e in range(j, j + batch_size * context_step, context_step)]
93
+
94
+
95
+ def hack(self, params: AnimateDiffProcess):
96
+ if AnimateDiffInfV2V.cfg_original_forward is not None:
97
+ logger.info("CFGDenoiser already hacked")
98
+ return
99
+
100
+ logger.info(f"Hacking CFGDenoiser forward function.")
101
+ AnimateDiffInfV2V.cfg_original_forward = CFGDenoiser.forward
102
+ cn_script = self.cn_script
103
+ prompt_scheduler = self.prompt_scheduler
104
+
105
+ def mm_cn_select(context: List[int]):
106
+ # take control images for current context.
107
+ if cn_script and cn_script.latest_network:
108
+ from scripts.hook import ControlModelType
109
+ for control in cn_script.latest_network.control_params:
110
+ if control.control_model_type not in [ControlModelType.IPAdapter, ControlModelType.Controlllite]:
111
+ if control.hint_cond.shape[0] > len(context):
112
+ control.hint_cond_backup = control.hint_cond
113
+ control.hint_cond = control.hint_cond[context]
114
+ control.hint_cond = control.hint_cond.to(device=devices.get_device_for("controlnet"))
115
+ if control.hr_hint_cond is not None:
116
+ if control.hr_hint_cond.shape[0] > len(context):
117
+ control.hr_hint_cond_backup = control.hr_hint_cond
118
+ control.hr_hint_cond = control.hr_hint_cond[context]
119
+ control.hr_hint_cond = control.hr_hint_cond.to(device=devices.get_device_for("controlnet"))
120
+ # IPAdapter and Controlllite are always on CPU.
121
+ elif control.control_model_type == ControlModelType.IPAdapter and control.control_model.image_emb.shape[0] > len(context):
122
+ control.control_model.image_emb_backup = control.control_model.image_emb
123
+ control.control_model.image_emb = control.control_model.image_emb[context]
124
+ control.control_model.uncond_image_emb_backup = control.control_model.uncond_image_emb
125
+ control.control_model.uncond_image_emb = control.control_model.uncond_image_emb[context]
126
+ elif control.control_model_type == ControlModelType.Controlllite:
127
+ for module in control.control_model.modules.values():
128
+ if module.cond_image.shape[0] > len(context):
129
+ module.cond_image_backup = module.cond_image
130
+ module.set_cond_image(module.cond_image[context])
131
+
132
+ def mm_cn_restore(context: List[int]):
133
+ # restore control images for next context
134
+ if cn_script and cn_script.latest_network:
135
+ from scripts.hook import ControlModelType
136
+ for control in cn_script.latest_network.control_params:
137
+ if control.control_model_type not in [ControlModelType.IPAdapter, ControlModelType.Controlllite]:
138
+ if getattr(control, "hint_cond_backup", None) is not None:
139
+ control.hint_cond_backup[context] = control.hint_cond.to(device="cpu")
140
+ control.hint_cond = control.hint_cond_backup
141
+ if control.hr_hint_cond is not None and getattr(control, "hr_hint_cond_backup", None) is not None:
142
+ control.hr_hint_cond_backup[context] = control.hr_hint_cond.to(device="cpu")
143
+ control.hr_hint_cond = control.hr_hint_cond_backup
144
+ elif control.control_model_type == ControlModelType.IPAdapter and getattr(control.control_model, "image_emb_backup", None) is not None:
145
+ control.control_model.image_emb = control.control_model.image_emb_backup
146
+ control.control_model.uncond_image_emb = control.control_model.uncond_image_emb_backup
147
+ elif control.control_model_type == ControlModelType.Controlllite:
148
+ for module in control.control_model.modules.values():
149
+ if getattr(module, "cond_image_backup", None) is not None:
150
+ module.set_cond_image(module.cond_image_backup)
151
+
152
+ def mm_sd_forward(self, x_in, sigma_in, cond_in, image_cond_in, make_condition_dict):
153
+ x_out = torch.zeros_like(x_in)
154
+ for context in AnimateDiffInfV2V.uniform(self.step, params.video_length, params.batch_size, params.stride, params.overlap, params.closed_loop):
155
+ if shared.opts.batch_cond_uncond:
156
+ _context = context + [c + params.video_length for c in context]
157
+ else:
158
+ _context = context
159
+ mm_cn_select(_context)
160
+ out = self.inner_model(
161
+ x_in[_context], sigma_in[_context],
162
+ cond=make_condition_dict(
163
+ cond_in[_context] if not isinstance(cond_in, dict) else {k: v[_context] for k, v in cond_in.items()},
164
+ image_cond_in[_context]))
165
+ x_out = x_out.to(dtype=out.dtype)
166
+ x_out[_context] = out
167
+ mm_cn_restore(_context)
168
+ return x_out
169
+
170
+ def mm_cfg_forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
171
+ if state.interrupted or state.skipped:
172
+ raise sd_samplers_common.InterruptedException
173
+
174
+ if sd_samplers_common.apply_refiner(self):
175
+ cond = self.sampler.sampler_extra_args['cond']
176
+ uncond = self.sampler.sampler_extra_args['uncond']
177
+
178
+ # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
179
+ # so is_edit_model is set to False to support AND composition.
180
+ is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
181
+
182
+ conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
183
+ uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
184
+
185
+ assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
186
+
187
+ if self.mask_before_denoising and self.mask is not None:
188
+ x = self.init_latent * self.mask + self.nmask * x
189
+
190
+ batch_size = len(conds_list)
191
+ repeats = [len(conds_list[i]) for i in range(batch_size)]
192
+
193
+ if shared.sd_model.model.conditioning_key == "crossattn-adm":
194
+ image_uncond = torch.zeros_like(image_cond) # this should not be supported.
195
+ make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm}
196
+ else:
197
+ image_uncond = image_cond
198
+ if isinstance(uncond, dict):
199
+ make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]}
200
+ else:
201
+ make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]}
202
+
203
+ if not is_edit_model:
204
+ x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
205
+ sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
206
+ image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
207
+ else:
208
+ x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
209
+ sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
210
+ image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
211
+
212
+ denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond)
213
+ cfg_denoiser_callback(denoiser_params)
214
+ x_in = denoiser_params.x
215
+ image_cond_in = denoiser_params.image_cond
216
+ sigma_in = denoiser_params.sigma
217
+ tensor = denoiser_params.text_cond
218
+ uncond = denoiser_params.text_uncond
219
+ skip_uncond = False
220
+
221
+ # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
222
+ if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
223
+ skip_uncond = True
224
+ x_in = x_in[:-batch_size]
225
+ sigma_in = sigma_in[:-batch_size]
226
+
227
+ self.padded_cond_uncond = False
228
+ if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]:
229
+ empty = shared.sd_model.cond_stage_model_empty_prompt
230
+ num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1]
231
+
232
+ if num_repeats < 0:
233
+ tensor = pad_cond(tensor, -num_repeats, empty)
234
+ self.padded_cond_uncond = True
235
+ elif num_repeats > 0:
236
+ uncond = pad_cond(uncond, num_repeats, empty)
237
+ self.padded_cond_uncond = True
238
+
239
+ if tensor.shape[1] == uncond.shape[1] or skip_uncond:
240
+ prompt_closed_loop = (params.video_length > params.batch_size) and (params.closed_loop in ['R+P', 'A']) # hook
241
+ tensor = prompt_scheduler.multi_cond(tensor, prompt_closed_loop) # hook
242
+ if is_edit_model:
243
+ cond_in = catenate_conds([tensor, uncond, uncond])
244
+ elif skip_uncond:
245
+ cond_in = tensor
246
+ else:
247
+ cond_in = catenate_conds([tensor, uncond])
248
+
249
+ if shared.opts.batch_cond_uncond:
250
+ x_out = mm_sd_forward(self, x_in, sigma_in, cond_in, image_cond_in, make_condition_dict) # hook
251
+ else:
252
+ x_out = torch.zeros_like(x_in)
253
+ for batch_offset in range(0, x_out.shape[0], batch_size):
254
+ a = batch_offset
255
+ b = a + batch_size
256
+ x_out[a:b] = mm_sd_forward(self, x_in[a:b], sigma_in[a:b], subscript_cond(cond_in, a, b), subscript_cond(image_cond_in, a, b), make_condition_dict) # hook
257
+ else:
258
+ x_out = torch.zeros_like(x_in)
259
+ batch_size = batch_size*2 if shared.opts.batch_cond_uncond else batch_size
260
+ for batch_offset in range(0, tensor.shape[0], batch_size):
261
+ a = batch_offset
262
+ b = min(a + batch_size, tensor.shape[0])
263
+
264
+ if not is_edit_model:
265
+ c_crossattn = subscript_cond(tensor, a, b)
266
+ else:
267
+ c_crossattn = torch.cat([tensor[a:b]], uncond)
268
+
269
+ x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
270
+
271
+ if not skip_uncond:
272
+ x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:]))
273
+
274
+ denoised_image_indexes = [x[0][0] for x in conds_list]
275
+ if skip_uncond:
276
+ fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
277
+ x_out = torch.cat([x_out, fake_uncond]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
278
+
279
+ denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model)
280
+ cfg_denoised_callback(denoised_params)
281
+
282
+ devices.test_for_nans(x_out, "unet")
283
+
284
+ if is_edit_model:
285
+ denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
286
+ elif skip_uncond:
287
+ denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
288
+ else:
289
+ denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
290
+
291
+ if not self.mask_before_denoising and self.mask is not None:
292
+ denoised = self.init_latent * self.mask + self.nmask * denoised
293
+
294
+ self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma)
295
+
296
+ if opts.live_preview_content == "Prompt":
297
+ preview = self.sampler.last_latent
298
+ elif opts.live_preview_content == "Negative prompt":
299
+ preview = self.get_pred_x0(x_in[-uncond.shape[0]:], x_out[-uncond.shape[0]:], sigma)
300
+ else:
301
+ preview = self.get_pred_x0(torch.cat([x_in[i:i+1] for i in denoised_image_indexes]), torch.cat([denoised[i:i+1] for i in denoised_image_indexes]), sigma)
302
+
303
+ sd_samplers_common.store_latent(preview)
304
+
305
+ after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps)
306
+ cfg_after_cfg_callback(after_cfg_callback_params)
307
+ denoised = after_cfg_callback_params.x
308
+
309
+ self.step += 1
310
+ return denoised
311
+
312
+ CFGDenoiser.forward = mm_cfg_forward
313
+
314
+
315
+ def restore(self):
316
+ if AnimateDiffInfV2V.cfg_original_forward is None:
317
+ logger.info("CFGDenoiser already restored.")
318
+ return
319
+
320
+ logger.info(f"Restoring CFGDenoiser forward function.")
321
+ CFGDenoiser.forward = AnimateDiffInfV2V.cfg_original_forward
322
+ AnimateDiffInfV2V.cfg_original_forward = None
extensions/sd-webui-animatediff/scripts/animatediff_latent.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from modules import images, shared
4
+ from modules.devices import device, dtype_vae, torch_gc
5
+ from modules.processing import StableDiffusionProcessingImg2Img
6
+ from modules.sd_samplers_common import (approximation_indexes,
7
+ images_tensor_to_samples)
8
+
9
+ from scripts.animatediff_logger import logger_animatediff as logger
10
+ from scripts.animatediff_ui import AnimateDiffProcess
11
+
12
+
13
+ class AnimateDiffI2VLatent:
14
+ def randomize(
15
+ self, p: StableDiffusionProcessingImg2Img, params: AnimateDiffProcess
16
+ ):
17
+ # Get init_alpha
18
+ init_alpha = [
19
+ 1 - pow(i, params.latent_power) / params.latent_scale
20
+ for i in range(params.video_length)
21
+ ]
22
+ logger.info(f"Randomizing init_latent according to {init_alpha}.")
23
+ init_alpha = torch.tensor(init_alpha, dtype=torch.float32, device=device)[
24
+ :, None, None, None
25
+ ]
26
+ init_alpha[init_alpha < 0] = 0
27
+
28
+ if params.last_frame is not None:
29
+ last_frame = params.last_frame
30
+ if type(last_frame) == str:
31
+ from modules.api.api import decode_base64_to_image
32
+ last_frame = decode_base64_to_image(last_frame)
33
+ # Get last_alpha
34
+ last_alpha = [
35
+ 1 - pow(i, params.latent_power_last) / params.latent_scale_last
36
+ for i in range(params.video_length)
37
+ ]
38
+ last_alpha.reverse()
39
+ logger.info(f"Randomizing last_latent according to {last_alpha}.")
40
+ last_alpha = torch.tensor(last_alpha, dtype=torch.float32, device=device)[
41
+ :, None, None, None
42
+ ]
43
+ last_alpha[last_alpha < 0] = 0
44
+
45
+ # Normalize alpha
46
+ sum_alpha = init_alpha + last_alpha
47
+ mask_alpha = sum_alpha > 1
48
+ scaling_factor = 1 / sum_alpha[mask_alpha]
49
+ init_alpha[mask_alpha] *= scaling_factor
50
+ last_alpha[mask_alpha] *= scaling_factor
51
+ init_alpha[0] = 1
52
+ init_alpha[-1] = 0
53
+ last_alpha[0] = 0
54
+ last_alpha[-1] = 1
55
+
56
+ # Calculate last_latent
57
+ if p.resize_mode != 3:
58
+ last_frame = images.resize_image(
59
+ p.resize_mode, last_frame, p.width, p.height
60
+ )
61
+ last_frame = np.array(last_frame).astype(np.float32) / 255.0
62
+ last_frame = np.moveaxis(last_frame, 2, 0)[None, ...]
63
+ last_frame = torch.from_numpy(last_frame).to(device).to(dtype_vae)
64
+ last_latent = images_tensor_to_samples(
65
+ last_frame,
66
+ approximation_indexes.get(shared.opts.sd_vae_encode_method),
67
+ p.sd_model,
68
+ )
69
+ torch_gc()
70
+ if p.resize_mode == 3:
71
+ opt_f = 8
72
+ last_latent = torch.nn.functional.interpolate(
73
+ last_latent,
74
+ size=(p.height // opt_f, p.width // opt_f),
75
+ mode="bilinear",
76
+ )
77
+ # Modify init_latent
78
+ p.init_latent = (
79
+ p.init_latent * init_alpha
80
+ + last_latent * last_alpha
81
+ + p.rng.next() * (1 - init_alpha - last_alpha)
82
+ )
83
+ else:
84
+ p.init_latent = p.init_latent * init_alpha + p.rng.next() * (1 - init_alpha)
extensions/sd-webui-animatediff/scripts/animatediff_lcm.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # TODO: remove this file when LCM is merged to A1111
3
+ import torch
4
+
5
+ from k_diffusion import utils, sampling
6
+ from k_diffusion.external import DiscreteEpsDDPMDenoiser
7
+ from k_diffusion.sampling import default_noise_sampler, trange
8
+
9
+ from modules import shared, sd_samplers_cfg_denoiser, sd_samplers_kdiffusion
10
+ from scripts.animatediff_logger import logger_animatediff as logger
11
+
12
+
13
+ class LCMCompVisDenoiser(DiscreteEpsDDPMDenoiser):
14
+ def __init__(self, model):
15
+ timesteps = 1000
16
+ beta_start = 0.00085
17
+ beta_end = 0.012
18
+
19
+ betas = torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype=torch.float32) ** 2
20
+ alphas = 1.0 - betas
21
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
22
+
23
+ original_timesteps = 50 # LCM Original Timesteps (default=50, for current version of LCM)
24
+ self.skip_steps = timesteps // original_timesteps
25
+
26
+
27
+ alphas_cumprod_valid = torch.zeros((original_timesteps), dtype=torch.float32, device=model.device)
28
+ for x in range(original_timesteps):
29
+ alphas_cumprod_valid[original_timesteps - 1 - x] = alphas_cumprod[timesteps - 1 - x * self.skip_steps]
30
+
31
+ super().__init__(model, alphas_cumprod_valid, quantize=None)
32
+
33
+
34
+ def get_sigmas(self, n=None, sgm=False):
35
+ if n is None:
36
+ return sampling.append_zero(self.sigmas.flip(0))
37
+
38
+ start = self.sigma_to_t(self.sigma_max)
39
+ end = self.sigma_to_t(self.sigma_min)
40
+
41
+ if sgm:
42
+ t = torch.linspace(start, end, n + 1, device=shared.sd_model.device)[:-1]
43
+ else:
44
+ t = torch.linspace(start, end, n, device=shared.sd_model.device)
45
+
46
+ return sampling.append_zero(self.t_to_sigma(t))
47
+
48
+
49
+ def sigma_to_t(self, sigma, quantize=None):
50
+ log_sigma = sigma.log()
51
+ dists = log_sigma - self.log_sigmas[:, None]
52
+ return dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)
53
+
54
+
55
+ def t_to_sigma(self, timestep):
56
+ t = torch.clamp(((timestep - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1))
57
+ return super().t_to_sigma(t)
58
+
59
+
60
+ def get_eps(self, *args, **kwargs):
61
+ return self.inner_model.apply_model(*args, **kwargs)
62
+
63
+
64
+ def get_scaled_out(self, sigma, output, input):
65
+ sigma_data = 0.5
66
+ scaled_timestep = utils.append_dims(self.sigma_to_t(sigma), output.ndim) * 10.0
67
+
68
+ c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
69
+ c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
70
+
71
+ return c_out * output + c_skip * input
72
+
73
+
74
+ def forward(self, input, sigma, **kwargs):
75
+ c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
76
+ eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
77
+ return self.get_scaled_out(sigma, input + eps * c_out, input)
78
+
79
+
80
+ def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
81
+ extra_args = {} if extra_args is None else extra_args
82
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
83
+ s_in = x.new_ones([x.shape[0]])
84
+
85
+ for i in trange(len(sigmas) - 1, disable=disable):
86
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
87
+
88
+ if callback is not None:
89
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
90
+
91
+ x = denoised
92
+ if sigmas[i + 1] > 0:
93
+ x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1])
94
+ return x
95
+
96
+
97
+ class CFGDenoiserLCM(sd_samplers_cfg_denoiser.CFGDenoiser):
98
+ @property
99
+ def inner_model(self):
100
+ if self.model_wrap is None:
101
+ denoiser = LCMCompVisDenoiser
102
+ self.model_wrap = denoiser(shared.sd_model)
103
+
104
+ return self.model_wrap
105
+
106
+
107
+ class LCMSampler(sd_samplers_kdiffusion.KDiffusionSampler):
108
+ def __init__(self, funcname, sd_model, options=None):
109
+ super().__init__(funcname, sd_model, options)
110
+ self.model_wrap_cfg = CFGDenoiserLCM(self)
111
+ self.model_wrap = self.model_wrap_cfg.inner_model
112
+
113
+
114
+ class AnimateDiffLCM:
115
+ lcm_ui_injected = False
116
+
117
+
118
+ @staticmethod
119
+ def hack_kdiff_ui():
120
+ if shared.opts.data.get("animatediff_disable_lcm", False):
121
+ return
122
+
123
+ if AnimateDiffLCM.lcm_ui_injected:
124
+ logger.info(f"LCM UI already injected.")
125
+ return
126
+
127
+ logger.info(f"Injecting LCM to UI.")
128
+ from modules import sd_samplers, sd_samplers_common
129
+ samplers_lcm = [('LCM', sample_lcm, ['k_lcm'], {})]
130
+ samplers_data_lcm = [
131
+ sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: LCMSampler(funcname, model), aliases, options)
132
+ for label, funcname, aliases, options in samplers_lcm
133
+ ]
134
+ sd_samplers.all_samplers.extend(samplers_data_lcm)
135
+ sd_samplers.all_samplers_map = {x.name: x for x in sd_samplers.all_samplers}
136
+ sd_samplers.set_samplers()
137
+ AnimateDiffLCM.lcm_ui_injected = True
extensions/sd-webui-animatediff/scripts/animatediff_logger.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import logging
3
+ import sys
4
+
5
+ from modules import shared
6
+
7
+
8
+ class ColoredFormatter(logging.Formatter):
9
+ COLORS = {
10
+ "DEBUG": "\033[0;36m", # CYAN
11
+ "INFO": "\033[0;32m", # GREEN
12
+ "WARNING": "\033[0;33m", # YELLOW
13
+ "ERROR": "\033[0;31m", # RED
14
+ "CRITICAL": "\033[0;37;41m", # WHITE ON RED
15
+ "RESET": "\033[0m", # RESET COLOR
16
+ }
17
+
18
+ def format(self, record):
19
+ colored_record = copy.copy(record)
20
+ levelname = colored_record.levelname
21
+ seq = self.COLORS.get(levelname, self.COLORS["RESET"])
22
+ colored_record.levelname = f"{seq}{levelname}{self.COLORS['RESET']}"
23
+ return super().format(colored_record)
24
+
25
+
26
+ # Create a new logger
27
+ logger_animatediff = logging.getLogger("AnimateDiff")
28
+ logger_animatediff.propagate = False
29
+
30
+ # Add handler if we don't have one.
31
+ if not logger_animatediff.handlers:
32
+ handler = logging.StreamHandler(sys.stdout)
33
+ handler.setFormatter(
34
+ ColoredFormatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
35
+ )
36
+ logger_animatediff.addHandler(handler)
37
+
38
+ # Configure logger
39
+ loglevel_string = getattr(shared.cmd_opts, "animatediff_loglevel", "INFO")
40
+ loglevel = getattr(logging, loglevel_string.upper(), None)
41
+ logger_animatediff.setLevel(loglevel)
extensions/sd-webui-animatediff/scripts/animatediff_lora.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import sys
4
+
5
+ from modules import sd_models, shared
6
+ from modules.paths import extensions_builtin_dir
7
+
8
+ from scripts.animatediff_logger import logger_animatediff as logger
9
+
10
+ sys.path.append(f"{extensions_builtin_dir}/Lora")
11
+
12
+ class AnimateDiffLora:
13
+ original_load_network = None
14
+
15
+ def __init__(self, v2: bool):
16
+ self.v2 = v2
17
+
18
+ def hack(self):
19
+ if not self.v2:
20
+ return
21
+
22
+ if AnimateDiffLora.original_load_network is not None:
23
+ logger.info("AnimateDiff LoRA already hacked")
24
+ return
25
+
26
+ logger.info("Hacking LoRA module to support motion LoRA")
27
+ import network
28
+ import networks
29
+ AnimateDiffLora.original_load_network = networks.load_network
30
+ original_load_network = AnimateDiffLora.original_load_network
31
+
32
+ def mm_load_network(name, network_on_disk):
33
+
34
+ def convert_mm_name_to_compvis(key):
35
+ sd_module_key, _, network_part = re.split(r'(_lora\.)', key)
36
+ sd_module_key = sd_module_key.replace("processor.", "").replace("to_out", "to_out.0")
37
+ return sd_module_key, 'lora_' + network_part
38
+
39
+ net = network.Network(name, network_on_disk)
40
+ net.mtime = os.path.getmtime(network_on_disk.filename)
41
+
42
+ sd = sd_models.read_state_dict(network_on_disk.filename)
43
+
44
+ if 'motion_modules' in list(sd.keys())[0]:
45
+ logger.info(f"Loading motion LoRA {name} from {network_on_disk.filename}")
46
+ matched_networks = {}
47
+
48
+ for key_network, weight in sd.items():
49
+ key, network_part = convert_mm_name_to_compvis(key_network)
50
+ sd_module = shared.sd_model.network_layer_mapping.get(key, None)
51
+
52
+ assert sd_module is not None, f"Failed to find sd module for key {key}."
53
+
54
+ if key not in matched_networks:
55
+ matched_networks[key] = network.NetworkWeights(
56
+ network_key=key_network, sd_key=key, w={}, sd_module=sd_module)
57
+
58
+ matched_networks[key].w[network_part] = weight
59
+
60
+ for key, weights in matched_networks.items():
61
+ net_module = networks.module_types[0].create_module(net, weights)
62
+ assert net_module is not None, "Failed to create motion module LoRA"
63
+ net.modules[key] = net_module
64
+
65
+ return net
66
+ else:
67
+ del sd
68
+ return original_load_network(name, network_on_disk)
69
+
70
+ networks.load_network = mm_load_network
71
+
72
+
73
+ def restore(self):
74
+ if not self.v2:
75
+ return
76
+
77
+ if AnimateDiffLora.original_load_network is None:
78
+ logger.info("AnimateDiff LoRA already restored")
79
+ return
80
+
81
+ logger.info("Restoring hacked LoRA")
82
+ import networks
83
+ networks.load_network = AnimateDiffLora.original_load_network
84
+ AnimateDiffLora.original_load_network = None
extensions/sd-webui-animatediff/scripts/animatediff_mm.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+ import os
3
+
4
+ import torch
5
+ from einops import rearrange
6
+ from modules import hashes, shared, sd_models, devices
7
+ from modules.devices import cpu, device, torch_gc
8
+
9
+ from motion_module import MotionWrapper, MotionModuleType
10
+ from scripts.animatediff_logger import logger_animatediff as logger
11
+
12
+
13
+ class AnimateDiffMM:
14
+ mm_injected = False
15
+
16
+ def __init__(self):
17
+ self.mm: MotionWrapper = None
18
+ self.script_dir = None
19
+ self.prev_alpha_cumprod = None
20
+ self.gn32_original_forward = None
21
+
22
+
23
+ def set_script_dir(self, script_dir):
24
+ self.script_dir = script_dir
25
+
26
+
27
+ def get_model_dir(self):
28
+ model_dir = shared.opts.data.get("animatediff_model_path", os.path.join(self.script_dir, "model"))
29
+ if not model_dir:
30
+ model_dir = os.path.join(self.script_dir, "model")
31
+ return model_dir
32
+
33
+
34
+ def _load(self, model_name):
35
+ model_path = os.path.join(self.get_model_dir(), model_name)
36
+ if not os.path.isfile(model_path):
37
+ raise RuntimeError("Please download models manually.")
38
+ if self.mm is None or self.mm.mm_name != model_name:
39
+ logger.info(f"Loading motion module {model_name} from {model_path}")
40
+ model_hash = hashes.sha256(model_path, f"AnimateDiff/{model_name}")
41
+ mm_state_dict = sd_models.read_state_dict(model_path)
42
+ model_type = MotionModuleType.get_mm_type(mm_state_dict)
43
+ logger.info(f"Guessed {model_name} architecture: {model_type}")
44
+ self.mm = MotionWrapper(model_name, model_hash, model_type)
45
+ missed_keys = self.mm.load_state_dict(mm_state_dict)
46
+ logger.warn(f"Missing keys {missed_keys}")
47
+ self.mm.to(device).eval()
48
+ if not shared.cmd_opts.no_half:
49
+ self.mm.half()
50
+ if getattr(devices, "fp8", False):
51
+ for module in self.mm.modules():
52
+ if isinstance(module, (torch.nn.Conv2d, torch.nn.Linear)):
53
+ module.to(torch.float8_e4m3fn)
54
+
55
+
56
+ def inject(self, sd_model, model_name="mm_sd_v15.ckpt"):
57
+ if AnimateDiffMM.mm_injected:
58
+ logger.info("Motion module already injected. Trying to restore.")
59
+ self.restore(sd_model)
60
+
61
+ unet = sd_model.model.diffusion_model
62
+ self._load(model_name)
63
+ inject_sdxl = sd_model.is_sdxl or self.mm.is_xl
64
+ sd_ver = "SDXL" if sd_model.is_sdxl else "SD1.5"
65
+ assert sd_model.is_sdxl == self.mm.is_xl, f"Motion module incompatible with SD. You are using {sd_ver} with {self.mm.mm_type}."
66
+
67
+ if self.mm.is_v2:
68
+ logger.info(f"Injecting motion module {model_name} into {sd_ver} UNet middle block.")
69
+ unet.middle_block.insert(-1, self.mm.mid_block.motion_modules[0])
70
+ elif self.mm.enable_gn_hack():
71
+ logger.info(f"Hacking {sd_ver} GroupNorm32 forward function.")
72
+ if self.mm.is_hotshot:
73
+ from sgm.modules.diffusionmodules.util import GroupNorm32
74
+ else:
75
+ from ldm.modules.diffusionmodules.util import GroupNorm32
76
+ self.gn32_original_forward = GroupNorm32.forward
77
+ gn32_original_forward = self.gn32_original_forward
78
+
79
+ def groupnorm32_mm_forward(self, x):
80
+ x = rearrange(x, "(b f) c h w -> b c f h w", b=2)
81
+ x = gn32_original_forward(self, x)
82
+ x = rearrange(x, "b c f h w -> (b f) c h w", b=2)
83
+ return x
84
+
85
+ GroupNorm32.forward = groupnorm32_mm_forward
86
+
87
+ logger.info(f"Injecting motion module {model_name} into {sd_ver} UNet input blocks.")
88
+ for mm_idx, unet_idx in enumerate([1, 2, 4, 5, 7, 8, 10, 11]):
89
+ if inject_sdxl and mm_idx >= 6:
90
+ break
91
+ mm_idx0, mm_idx1 = mm_idx // 2, mm_idx % 2
92
+ mm_inject = getattr(self.mm.down_blocks[mm_idx0], "temporal_attentions" if self.mm.is_hotshot else "motion_modules")[mm_idx1]
93
+ unet.input_blocks[unet_idx].append(mm_inject)
94
+
95
+ logger.info(f"Injecting motion module {model_name} into {sd_ver} UNet output blocks.")
96
+ for unet_idx in range(12):
97
+ if inject_sdxl and unet_idx >= 9:
98
+ break
99
+ mm_idx0, mm_idx1 = unet_idx // 3, unet_idx % 3
100
+ mm_inject = getattr(self.mm.up_blocks[mm_idx0], "temporal_attentions" if self.mm.is_hotshot else "motion_modules")[mm_idx1]
101
+ if unet_idx % 3 == 2 and unet_idx != (8 if self.mm.is_xl else 11):
102
+ unet.output_blocks[unet_idx].insert(-1, mm_inject)
103
+ else:
104
+ unet.output_blocks[unet_idx].append(mm_inject)
105
+
106
+ self._set_ddim_alpha(sd_model)
107
+ self._set_layer_mapping(sd_model)
108
+ AnimateDiffMM.mm_injected = True
109
+ logger.info(f"Injection finished.")
110
+
111
+
112
+ def restore(self, sd_model):
113
+ if not AnimateDiffMM.mm_injected:
114
+ logger.info("Motion module already removed.")
115
+ return
116
+
117
+ inject_sdxl = sd_model.is_sdxl or self.mm.is_xl
118
+ sd_ver = "SDXL" if sd_model.is_sdxl else "SD1.5"
119
+ self._restore_ddim_alpha(sd_model)
120
+ unet = sd_model.model.diffusion_model
121
+
122
+ logger.info(f"Removing motion module from {sd_ver} UNet input blocks.")
123
+ for unet_idx in [1, 2, 4, 5, 7, 8, 10, 11]:
124
+ if inject_sdxl and unet_idx >= 9:
125
+ break
126
+ unet.input_blocks[unet_idx].pop(-1)
127
+
128
+ logger.info(f"Removing motion module from {sd_ver} UNet output blocks.")
129
+ for unet_idx in range(12):
130
+ if inject_sdxl and unet_idx >= 9:
131
+ break
132
+ if unet_idx % 3 == 2 and unet_idx != (8 if self.mm.is_xl else 11):
133
+ unet.output_blocks[unet_idx].pop(-2)
134
+ else:
135
+ unet.output_blocks[unet_idx].pop(-1)
136
+
137
+ if self.mm.is_v2:
138
+ logger.info(f"Removing motion module from {sd_ver} UNet middle block.")
139
+ unet.middle_block.pop(-2)
140
+ elif self.mm.enable_gn_hack():
141
+ logger.info(f"Restoring {sd_ver} GroupNorm32 forward function.")
142
+ if self.mm.is_hotshot:
143
+ from sgm.modules.diffusionmodules.util import GroupNorm32
144
+ else:
145
+ from ldm.modules.diffusionmodules.util import GroupNorm32
146
+ GroupNorm32.forward = self.gn32_original_forward
147
+ self.gn32_original_forward = None
148
+
149
+ AnimateDiffMM.mm_injected = False
150
+ logger.info(f"Removal finished.")
151
+ if shared.cmd_opts.lowvram:
152
+ self.unload()
153
+
154
+
155
+ def _set_ddim_alpha(self, sd_model):
156
+ logger.info(f"Setting DDIM alpha.")
157
+ beta_start = 0.00085
158
+ beta_end = 0.020 if self.mm.is_adxl else 0.012
159
+ if self.mm.is_adxl:
160
+ betas = torch.linspace(beta_start**0.5, beta_end**0.5, 1000, dtype=torch.float32, device=device) ** 2
161
+ else:
162
+ betas = torch.linspace(
163
+ beta_start,
164
+ beta_end,
165
+ 1000 if sd_model.is_sdxl else sd_model.num_timesteps,
166
+ dtype=torch.float32,
167
+ device=device,
168
+ )
169
+ alphas = 1.0 - betas
170
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
171
+ self.prev_alpha_cumprod = sd_model.alphas_cumprod
172
+ sd_model.alphas_cumprod = alphas_cumprod
173
+
174
+
175
+ def _set_layer_mapping(self, sd_model):
176
+ if hasattr(sd_model, 'network_layer_mapping'):
177
+ for name, module in self.mm.named_modules():
178
+ sd_model.network_layer_mapping[name] = module
179
+ module.network_layer_name = name
180
+
181
+
182
+ def _restore_ddim_alpha(self, sd_model):
183
+ logger.info(f"Restoring DDIM alpha.")
184
+ sd_model.alphas_cumprod = self.prev_alpha_cumprod
185
+ self.prev_alpha_cumprod = None
186
+
187
+
188
+ def unload(self):
189
+ logger.info("Moving motion module to CPU")
190
+ if self.mm is not None:
191
+ self.mm.to(cpu)
192
+ torch_gc()
193
+ gc.collect()
194
+
195
+
196
+ def remove(self):
197
+ logger.info("Removing motion module from any memory")
198
+ del self.mm
199
+ self.mm = None
200
+ torch_gc()
201
+ gc.collect()
202
+
203
+
204
+ mm_animatediff = AnimateDiffMM()
extensions/sd-webui-animatediff/scripts/animatediff_output.py ADDED
@@ -0,0 +1,361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import datetime
3
+ from pathlib import Path
4
+
5
+ import imageio.v3 as imageio
6
+ import numpy as np
7
+ from PIL import Image, PngImagePlugin
8
+ import PIL.features
9
+ import piexif
10
+ from modules import images, shared
11
+ from modules.processing import Processed, StableDiffusionProcessing
12
+
13
+ from scripts.animatediff_logger import logger_animatediff as logger
14
+ from scripts.animatediff_ui import AnimateDiffProcess
15
+
16
+
17
+
18
+ class AnimateDiffOutput:
19
+ def output(self, p: StableDiffusionProcessing, res: Processed, params: AnimateDiffProcess):
20
+ video_paths = []
21
+ logger.info("Merging images into GIF.")
22
+ date = datetime.datetime.now().strftime('%Y-%m-%d')
23
+ output_dir = Path(f"{p.outpath_samples}/AnimateDiff/{date}")
24
+ output_dir.mkdir(parents=True, exist_ok=True)
25
+ step = params.video_length if params.video_length > params.batch_size else params.batch_size
26
+ for i in range(res.index_of_first_image, len(res.images), step):
27
+ # frame interpolation replaces video_list with interpolated frames
28
+ # so make a copy instead of a slice (reference), to avoid modifying res
29
+ frame_list = [image.copy() for image in res.images[i : i + params.video_length]]
30
+
31
+ seq = images.get_next_sequence_number(output_dir, "")
32
+ filename_suffix = f"-{params.request_id}" if params.request_id else ""
33
+ filename = f"{seq:05}-{res.all_seeds[(i-res.index_of_first_image)]}{filename_suffix}"
34
+
35
+ video_path_prefix = output_dir / filename
36
+
37
+ frame_list = self._add_reverse(params, frame_list)
38
+ frame_list = self._interp(p, params, frame_list, filename)
39
+ video_paths += self._save(params, frame_list, video_path_prefix, res, i)
40
+
41
+ if len(video_paths) == 0:
42
+ return
43
+
44
+ res.images = video_paths if not p.is_api else (self._encode_video_to_b64(video_paths) + (frame_list if 'Frame' in params.format else []))
45
+
46
+
47
+ def _add_reverse(self, params: AnimateDiffProcess, frame_list: list):
48
+ if params.video_length <= params.batch_size and params.closed_loop in ['A']:
49
+ frame_list_reverse = frame_list[::-1]
50
+ if len(frame_list_reverse) > 0:
51
+ frame_list_reverse.pop(0)
52
+ if len(frame_list_reverse) > 0:
53
+ frame_list_reverse.pop(-1)
54
+ return frame_list + frame_list_reverse
55
+ return frame_list
56
+
57
+
58
+ def _interp(
59
+ self,
60
+ p: StableDiffusionProcessing,
61
+ params: AnimateDiffProcess,
62
+ frame_list: list,
63
+ filename: str
64
+ ):
65
+ if params.interp not in ['FILM']:
66
+ return frame_list
67
+
68
+ try:
69
+ from deforum_helpers.frame_interpolation import (
70
+ calculate_frames_to_add, check_and_download_film_model)
71
+ from film_interpolation.film_inference import run_film_interp_infer
72
+ except ImportError:
73
+ logger.error("Deforum not found. Please install: https://github.com/deforum-art/deforum-for-automatic1111-webui.git")
74
+ return frame_list
75
+
76
+ import glob
77
+ import os
78
+ import shutil
79
+
80
+ import modules.paths as ph
81
+
82
+ # load film model
83
+ deforum_models_path = ph.models_path + '/Deforum'
84
+ film_model_folder = os.path.join(deforum_models_path,'film_interpolation')
85
+ film_model_name = 'film_net_fp16.pt'
86
+ film_model_path = os.path.join(film_model_folder, film_model_name)
87
+ check_and_download_film_model('film_net_fp16.pt', film_model_folder)
88
+
89
+ film_in_between_frames_count = calculate_frames_to_add(len(frame_list), params.interp_x)
90
+
91
+ # save original frames to tmp folder for deforum input
92
+ tmp_folder = f"{p.outpath_samples}/AnimateDiff/tmp"
93
+ input_folder = f"{tmp_folder}/input"
94
+ os.makedirs(input_folder, exist_ok=True)
95
+ for tmp_seq, frame in enumerate(frame_list):
96
+ imageio.imwrite(f"{input_folder}/{tmp_seq:05}.png", frame)
97
+
98
+ # deforum saves output frames to tmp/{filename}
99
+ save_folder = f"{tmp_folder}/{filename}"
100
+ os.makedirs(save_folder, exist_ok=True)
101
+
102
+ run_film_interp_infer(
103
+ model_path = film_model_path,
104
+ input_folder = input_folder,
105
+ save_folder = save_folder,
106
+ inter_frames = film_in_between_frames_count)
107
+
108
+ # load deforum output frames and replace video_list
109
+ interp_frame_paths = sorted(glob.glob(os.path.join(save_folder, '*.png')))
110
+ frame_list = []
111
+ for f in interp_frame_paths:
112
+ with Image.open(f) as img:
113
+ img.load()
114
+ frame_list.append(img)
115
+
116
+ # if saving PNG, enforce saving to custom folder
117
+ if "PNG" in params.format:
118
+ params.force_save_to_custom = True
119
+
120
+ # remove tmp folder
121
+ try: shutil.rmtree(tmp_folder)
122
+ except OSError as e: print(f"Error: {e}")
123
+
124
+ return frame_list
125
+
126
+
127
+ def _save(
128
+ self,
129
+ params: AnimateDiffProcess,
130
+ frame_list: list,
131
+ video_path_prefix: Path,
132
+ res: Processed,
133
+ index: int,
134
+ ):
135
+ video_paths = []
136
+ video_array = [np.array(v) for v in frame_list]
137
+ infotext = res.infotexts[index]
138
+ s3_enable =shared.opts.data.get("animatediff_s3_enable", False)
139
+ use_infotext = shared.opts.enable_pnginfo and infotext is not None
140
+ if "PNG" in params.format and (shared.opts.data.get("animatediff_save_to_custom", False) or getattr(params, "force_save_to_custom", False)):
141
+ video_path_prefix.mkdir(exist_ok=True, parents=True)
142
+ for i, frame in enumerate(frame_list):
143
+ png_filename = video_path_prefix/f"{i:05}.png"
144
+ png_info = PngImagePlugin.PngInfo()
145
+ png_info.add_text('parameters', infotext)
146
+ imageio.imwrite(png_filename, frame, pnginfo=png_info)
147
+
148
+ if "GIF" in params.format:
149
+ video_path_gif = str(video_path_prefix) + ".gif"
150
+ video_paths.append(video_path_gif)
151
+ if shared.opts.data.get("animatediff_optimize_gif_palette", False):
152
+ try:
153
+ import av
154
+ except ImportError:
155
+ from launch import run_pip
156
+ run_pip(
157
+ "install imageio[pyav]",
158
+ "sd-webui-animatediff GIF palette optimization requirement: imageio[pyav]",
159
+ )
160
+ imageio.imwrite(
161
+ video_path_gif, video_array, plugin='pyav', fps=params.fps,
162
+ codec='gif', out_pixel_format='pal8',
163
+ filter_graph=(
164
+ {
165
+ "split": ("split", ""),
166
+ "palgen": ("palettegen", ""),
167
+ "paluse": ("paletteuse", ""),
168
+ "scale": ("scale", f"{frame_list[0].width}:{frame_list[0].height}")
169
+ },
170
+ [
171
+ ("video_in", "scale", 0, 0),
172
+ ("scale", "split", 0, 0),
173
+ ("split", "palgen", 1, 0),
174
+ ("split", "paluse", 0, 0),
175
+ ("palgen", "paluse", 0, 1),
176
+ ("paluse", "video_out", 0, 0),
177
+ ]
178
+ )
179
+ )
180
+ # imageio[pyav].imwrite doesn't support comment parameter
181
+ if use_infotext:
182
+ try:
183
+ import exiftool
184
+ except ImportError:
185
+ from launch import run_pip
186
+ run_pip(
187
+ "install PyExifTool",
188
+ "sd-webui-animatediff GIF palette optimization requirement: PyExifTool",
189
+ )
190
+ import exiftool
191
+ finally:
192
+ try:
193
+ exif_tool = exiftool.ExifTool()
194
+ with exif_tool:
195
+ escaped_infotext = infotext.replace('\n', r'\n')
196
+ exif_tool.execute("-overwrite_original", f"-Comment={escaped_infotext}", video_path_gif)
197
+ except FileNotFoundError:
198
+ logger.warn(
199
+ "exiftool not found, required for infotext with optimized GIF palette, try: apt install libimage-exiftool-perl or https://exiftool.org/"
200
+ )
201
+ else:
202
+ imageio.imwrite(
203
+ video_path_gif,
204
+ video_array,
205
+ plugin='pillow',
206
+ duration=(1000 / params.fps),
207
+ loop=params.loop_number,
208
+ comment=(infotext if use_infotext else "")
209
+ )
210
+ if shared.opts.data.get("animatediff_optimize_gif_gifsicle", False):
211
+ self._optimize_gif(video_path_gif)
212
+
213
+ if "MP4" in params.format:
214
+ video_path_mp4 = str(video_path_prefix) + ".mp4"
215
+ video_paths.append(video_path_mp4)
216
+ try:
217
+ import av
218
+ except ImportError:
219
+ from launch import run_pip
220
+ run_pip(
221
+ "install pyav",
222
+ "sd-webui-animatediff MP4 save requirement: PyAV",
223
+ )
224
+ import av
225
+ options = {
226
+ "crf": str(shared.opts.data.get("animatediff_mp4_crf", 23))
227
+ }
228
+ preset = shared.opts.data.get("animatediff_mp4_preset", "")
229
+ if preset != "": options["preset"] = preset
230
+ tune = shared.opts.data.get("animatediff_mp4_tune", "")
231
+ if tune != "": options["tune"] = tune
232
+ output = av.open(video_path_mp4, "w")
233
+ logger.info(f"Saving {video_path_mp4}")
234
+ if use_infotext:
235
+ output.metadata["Comment"] = infotext
236
+ stream = output.add_stream('libx264', params.fps, options=options)
237
+ stream.width = frame_list[0].width
238
+ stream.height = frame_list[0].height
239
+ for img in video_array:
240
+ frame = av.VideoFrame.from_ndarray(img)
241
+ packet = stream.encode(frame)
242
+ output.mux(packet)
243
+ packet = stream.encode(None)
244
+ output.mux(packet)
245
+ output.close()
246
+
247
+ if "TXT" in params.format and res.images[index].info is not None:
248
+ video_path_txt = str(video_path_prefix) + ".txt"
249
+ with open(video_path_txt, "w", encoding="utf8") as file:
250
+ file.write(f"{infotext}\n")
251
+
252
+ if "WEBP" in params.format:
253
+ if PIL.features.check('webp_anim'):
254
+ video_path_webp = str(video_path_prefix) + ".webp"
255
+ video_paths.append(video_path_webp)
256
+ exif_bytes = b''
257
+ if use_infotext:
258
+ exif_bytes = piexif.dump({
259
+ "Exif":{
260
+ piexif.ExifIFD.UserComment:piexif.helper.UserComment.dump(infotext, encoding="unicode")
261
+ }})
262
+ lossless = shared.opts.data.get("animatediff_webp_lossless", False)
263
+ quality = shared.opts.data.get("animatediff_webp_quality", 80)
264
+ logger.info(f"Saving {video_path_webp} with lossless={lossless} and quality={quality}")
265
+ imageio.imwrite(video_path_webp, video_array, plugin='pillow',
266
+ duration=int(1 / params.fps * 1000), loop=params.loop_number,
267
+ lossless=lossless, quality=quality, exif=exif_bytes
268
+ )
269
+ # see additional Pillow WebP options at https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html#webp
270
+ else:
271
+ logger.warn("WebP animation in Pillow requires system WebP library v0.5.0 or later")
272
+ if "WEBM" in params.format:
273
+ video_path_webm = str(video_path_prefix) + ".webm"
274
+ video_paths.append(video_path_webm)
275
+ logger.info(f"Saving {video_path_webm}")
276
+ with imageio.imopen(video_path_webm, "w", plugin="pyav") as file:
277
+ if use_infotext:
278
+ file.container_metadata["Title"] = infotext
279
+ file.container_metadata["Comment"] = infotext
280
+ file.write(video_array, codec="vp9", fps=params.fps)
281
+
282
+ if s3_enable:
283
+ for video_path in video_paths: self._save_to_s3_stroge(video_path)
284
+ return video_paths
285
+
286
+
287
+ def _optimize_gif(self, video_path: str):
288
+ try:
289
+ import pygifsicle
290
+ except ImportError:
291
+ from launch import run_pip
292
+
293
+ run_pip(
294
+ "install pygifsicle",
295
+ "sd-webui-animatediff GIF optimization requirement: pygifsicle",
296
+ )
297
+ import pygifsicle
298
+ finally:
299
+ try:
300
+ pygifsicle.optimize(video_path)
301
+ except FileNotFoundError:
302
+ logger.warn("gifsicle not found, required for optimized GIFs, try: apt install gifsicle")
303
+
304
+
305
+ def _encode_video_to_b64(self, paths):
306
+ videos = []
307
+ for v_path in paths:
308
+ with open(v_path, "rb") as video_file:
309
+ videos.append(base64.b64encode(video_file.read()).decode("utf-8"))
310
+ return videos
311
+
312
+ def _install_requirement_if_absent(self,lib):
313
+ import launch
314
+ if not launch.is_installed(lib):
315
+ launch.run_pip(f"install {lib}", f"animatediff requirement: {lib}")
316
+
317
+ def _exist_bucket(self,s3_client,bucketname):
318
+ try:
319
+ s3_client.head_bucket(Bucket=bucketname)
320
+ return True
321
+ except ClientError as e:
322
+ if e.response['Error']['Code'] == '404':
323
+ return False
324
+ else:
325
+ raise
326
+
327
+ def _save_to_s3_stroge(self ,file_path):
328
+ """
329
+ put object to object storge
330
+ :type bucketname: string
331
+ :param bucketname: will save to this 'bucket' , access_key and secret_key must have permissions to save
332
+ :type file : file
333
+ :param file : the local file
334
+ """
335
+ self._install_requirement_if_absent('boto3')
336
+ import boto3
337
+ from botocore.exceptions import ClientError
338
+ import os
339
+ host = shared.opts.data.get("animatediff_s3_host", '127.0.0.1')
340
+ port = shared.opts.data.get("animatediff_s3_port", '9001')
341
+ access_key = shared.opts.data.get("animatediff_s3_access_key", '')
342
+ secret_key = shared.opts.data.get("animatediff_s3_secret_key", '')
343
+ bucket = shared.opts.data.get("animatediff_s3_storge_bucket", '')
344
+ client = boto3.client(
345
+ service_name='s3',
346
+ aws_access_key_id = access_key,
347
+ aws_secret_access_key = secret_key,
348
+ endpoint_url=f'http://{host}:{port}',
349
+ )
350
+
351
+ if not os.path.exists(file_path): return
352
+ date = datetime.datetime.now().strftime('%Y-%m-%d')
353
+ if not self._exist_bucket(client,bucket):
354
+ client.create_bucket(Bucket=bucket)
355
+
356
+ filename = os.path.split(file_path)[1]
357
+ targetpath = f"{date}/{filename}"
358
+ client.upload_file(file_path, bucket, targetpath)
359
+ logger.info(f"{file_path} saved to s3 in bucket: {bucket}")
360
+ return f"http://{host}:{port}/{bucket}/{targetpath}"
361
+
extensions/sd-webui-animatediff/scripts/animatediff_prompt.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import torch
3
+
4
+ from modules.processing import StableDiffusionProcessing, Processed
5
+
6
+ from scripts.animatediff_logger import logger_animatediff as logger
7
+ from scripts.animatediff_infotext import write_params_txt
8
+
9
+
10
+ class AnimateDiffPromptSchedule:
11
+
12
+ def __init__(self):
13
+ self.prompt_map = None
14
+ self.original_prompt = None
15
+
16
+
17
+ def save_infotext_img(self, p: StableDiffusionProcessing):
18
+ if self.prompt_map is not None:
19
+ p.prompts = [self.original_prompt for _ in range(p.batch_size)]
20
+
21
+
22
+ def save_infotext_txt(self, res: Processed):
23
+ if self.prompt_map is not None:
24
+ parts = res.info.split('\nNegative prompt: ', 1)
25
+ if len(parts) > 1:
26
+ res.info = f"{self.original_prompt}\nNegative prompt: {parts[1]}"
27
+ for i in range(len(res.infotexts)):
28
+ parts = res.infotexts[i].split('\nNegative prompt: ', 1)
29
+ if len(parts) > 1:
30
+ res.infotexts[i] = f"{self.original_prompt}\nNegative prompt: {parts[1]}"
31
+ write_params_txt(res.info)
32
+
33
+
34
+ def parse_prompt(self, p: StableDiffusionProcessing):
35
+ if type(p.prompt) is not str:
36
+ logger.warn("prompt is not str, cannot support prompt map")
37
+ return
38
+
39
+ lines = p.prompt.strip().split('\n')
40
+ data = {
41
+ 'head_prompts': [],
42
+ 'mapp_prompts': {},
43
+ 'tail_prompts': []
44
+ }
45
+
46
+ mode = 'head'
47
+ for line in lines:
48
+ if mode == 'head':
49
+ if re.match(r'^\d+:', line):
50
+ mode = 'mapp'
51
+ else:
52
+ data['head_prompts'].append(line)
53
+
54
+ if mode == 'mapp':
55
+ match = re.match(r'^(\d+): (.+)$', line)
56
+ if match:
57
+ frame, prompt = match.groups()
58
+ data['mapp_prompts'][int(frame)] = prompt
59
+ else:
60
+ mode = 'tail'
61
+
62
+ if mode == 'tail':
63
+ data['tail_prompts'].append(line)
64
+
65
+ if data['mapp_prompts']:
66
+ logger.info("You are using prompt travel.")
67
+ self.prompt_map = {}
68
+ prompt_list = []
69
+ last_frame = 0
70
+ current_prompt = ''
71
+ for frame, prompt in data['mapp_prompts'].items():
72
+ prompt_list += [current_prompt for _ in range(last_frame, frame)]
73
+ last_frame = frame
74
+ current_prompt = f"{', '.join(data['head_prompts'])}, {prompt}, {', '.join(data['tail_prompts'])}"
75
+ self.prompt_map[frame] = current_prompt
76
+ prompt_list += [current_prompt for _ in range(last_frame, p.batch_size)]
77
+ assert len(prompt_list) == p.batch_size, f"prompt_list length {len(prompt_list)} != batch_size {p.batch_size}"
78
+ self.original_prompt = p.prompt
79
+ p.prompt = prompt_list * p.n_iter
80
+
81
+
82
+ def single_cond(self, center_frame, video_length: int, cond: torch.Tensor, closed_loop = False):
83
+ if closed_loop:
84
+ key_prev = list(self.prompt_map.keys())[-1]
85
+ key_next = list(self.prompt_map.keys())[0]
86
+ else:
87
+ key_prev = list(self.prompt_map.keys())[0]
88
+ key_next = list(self.prompt_map.keys())[-1]
89
+
90
+ for p in self.prompt_map.keys():
91
+ if p > center_frame:
92
+ key_next = p
93
+ break
94
+ key_prev = p
95
+
96
+ dist_prev = center_frame - key_prev
97
+ if dist_prev < 0:
98
+ dist_prev += video_length
99
+ dist_next = key_next - center_frame
100
+ if dist_next < 0:
101
+ dist_next += video_length
102
+
103
+ if key_prev == key_next or dist_prev + dist_next == 0:
104
+ return cond[key_prev] if isinstance(cond, torch.Tensor) else {k: v[key_prev] for k, v in cond.items()}
105
+
106
+ rate = dist_prev / (dist_prev + dist_next)
107
+ if isinstance(cond, torch.Tensor):
108
+ return AnimateDiffPromptSchedule.slerp(cond[key_prev], cond[key_next], rate)
109
+ else: # isinstance(cond, dict)
110
+ return {
111
+ k: AnimateDiffPromptSchedule.slerp(v[key_prev], v[key_next], rate)
112
+ for k, v in cond.items()
113
+ }
114
+
115
+
116
+ def multi_cond(self, cond: torch.Tensor, closed_loop = False):
117
+ if self.prompt_map is None:
118
+ return cond
119
+ cond_list = [] if isinstance(cond, torch.Tensor) else {k: [] for k in cond.keys()}
120
+ for i in range(cond.shape[0]):
121
+ single_cond = self.single_cond(i, cond.shape[0], cond, closed_loop)
122
+ if isinstance(cond, torch.Tensor):
123
+ cond_list.append(single_cond)
124
+ else:
125
+ for k, v in single_cond.items():
126
+ cond_list[k].append(v)
127
+ if isinstance(cond, torch.Tensor):
128
+ return torch.stack(cond_list).to(cond.dtype).to(cond.device)
129
+ else:
130
+ return {k: torch.stack(v).to(cond[k].dtype).to(cond[k].device) for k, v in cond_list.items()}
131
+
132
+
133
+ @staticmethod
134
+ def slerp(
135
+ v0: torch.Tensor, v1: torch.Tensor, t: float, DOT_THRESHOLD: float = 0.9995
136
+ ) -> torch.Tensor:
137
+ u0 = v0 / v0.norm()
138
+ u1 = v1 / v1.norm()
139
+ dot = (u0 * u1).sum()
140
+ if dot.abs() > DOT_THRESHOLD:
141
+ return (1.0 - t) * v0 + t * v1
142
+ omega = dot.acos()
143
+ return (((1.0 - t) * omega).sin() * v0 + (t * omega).sin() * v1) / omega.sin()
extensions/sd-webui-animatediff/scripts/animatediff_ui.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import cv2
4
+ import gradio as gr
5
+
6
+ from modules import shared
7
+ from modules.processing import StableDiffusionProcessing
8
+
9
+ from scripts.animatediff_mm import mm_animatediff as motion_module
10
+ from scripts.animatediff_i2ibatch import animatediff_i2ibatch
11
+ from scripts.animatediff_lcm import AnimateDiffLCM
12
+
13
+
14
+ class ToolButton(gr.Button, gr.components.FormComponent):
15
+ """Small button with single emoji as text, fits inside gradio forms"""
16
+
17
+ def __init__(self, **kwargs):
18
+ super().__init__(variant="tool", **kwargs)
19
+
20
+
21
+ def get_block_name(self):
22
+ return "button"
23
+
24
+
25
+ class AnimateDiffProcess:
26
+
27
+ def __init__(
28
+ self,
29
+ model="mm_sd_v15_v2.ckpt",
30
+ enable=False,
31
+ video_length=0,
32
+ fps=8,
33
+ loop_number=0,
34
+ closed_loop='R-P',
35
+ batch_size=16,
36
+ stride=1,
37
+ overlap=-1,
38
+ format=["GIF", "PNG"],
39
+ interp='Off',
40
+ interp_x=10,
41
+ video_source=None,
42
+ video_path='',
43
+ latent_power=1,
44
+ latent_scale=32,
45
+ last_frame=None,
46
+ latent_power_last=1,
47
+ latent_scale_last=32,
48
+ request_id = '',
49
+ ):
50
+ self.model = model
51
+ self.enable = enable
52
+ self.video_length = video_length
53
+ self.fps = fps
54
+ self.loop_number = loop_number
55
+ self.closed_loop = closed_loop
56
+ self.batch_size = batch_size
57
+ self.stride = stride
58
+ self.overlap = overlap
59
+ self.format = format
60
+ self.interp = interp
61
+ self.interp_x = interp_x
62
+ self.video_source = video_source
63
+ self.video_path = video_path
64
+ self.latent_power = latent_power
65
+ self.latent_scale = latent_scale
66
+ self.last_frame = last_frame
67
+ self.latent_power_last = latent_power_last
68
+ self.latent_scale_last = latent_scale_last
69
+ self.request_id = request_id
70
+
71
+
72
+ def get_list(self, is_img2img: bool):
73
+ list_var = list(vars(self).values())[:-1]
74
+ if is_img2img:
75
+ animatediff_i2ibatch.hack()
76
+ else:
77
+ list_var = list_var[:-5]
78
+ return list_var
79
+
80
+
81
+ def get_dict(self, is_img2img: bool):
82
+ infotext = {
83
+ "enable": self.enable,
84
+ "model": self.model,
85
+ "video_length": self.video_length,
86
+ "fps": self.fps,
87
+ "loop_number": self.loop_number,
88
+ "closed_loop": self.closed_loop,
89
+ "batch_size": self.batch_size,
90
+ "stride": self.stride,
91
+ "overlap": self.overlap,
92
+ "interp": self.interp,
93
+ "interp_x": self.interp_x,
94
+ }
95
+ if self.request_id:
96
+ infotext['request_id'] = self.request_id
97
+ if motion_module.mm is not None and motion_module.mm.mm_hash is not None:
98
+ infotext['mm_hash'] = motion_module.mm.mm_hash[:8]
99
+ if is_img2img:
100
+ infotext.update({
101
+ "latent_power": self.latent_power,
102
+ "latent_scale": self.latent_scale,
103
+ "latent_power_last": self.latent_power_last,
104
+ "latent_scale_last": self.latent_scale_last,
105
+ })
106
+ infotext_str = ', '.join(f"{k}: {v}" for k, v in infotext.items())
107
+ return infotext_str
108
+
109
+
110
+ def _check(self):
111
+ assert (
112
+ self.video_length >= 0 and self.fps > 0
113
+ ), "Video length and FPS should be positive."
114
+ assert not set(["GIF", "MP4", "PNG", "WEBP", "WEBM"]).isdisjoint(
115
+ self.format
116
+ ), "At least one saving format should be selected."
117
+
118
+
119
+ def set_p(self, p: StableDiffusionProcessing):
120
+ self._check()
121
+ if self.video_length < self.batch_size:
122
+ p.batch_size = self.batch_size
123
+ else:
124
+ p.batch_size = self.video_length
125
+ if self.video_length == 0:
126
+ self.video_length = p.batch_size
127
+ self.video_default = True
128
+ else:
129
+ self.video_default = False
130
+ if self.overlap == -1:
131
+ self.overlap = self.batch_size // 4
132
+ if "PNG" not in self.format or shared.opts.data.get("animatediff_save_to_custom", False):
133
+ p.do_not_save_samples = True
134
+
135
+
136
+ class AnimateDiffUiGroup:
137
+ txt2img_submit_button = None
138
+ img2img_submit_button = None
139
+
140
+ def __init__(self):
141
+ self.params = AnimateDiffProcess()
142
+
143
+
144
+ def render(self, is_img2img: bool, model_dir: str):
145
+ if not os.path.isdir(model_dir):
146
+ os.mkdir(model_dir)
147
+ elemid_prefix = "img2img-ad-" if is_img2img else "txt2img-ad-"
148
+ model_list = [f for f in os.listdir(model_dir) if f != ".gitkeep"]
149
+ with gr.Accordion("AnimateDiff", open=False):
150
+ gr.Markdown(value="Please click [this link](https://github.com/continue-revolution/sd-webui-animatediff#webui-parameters) to read the documentation of each parameter.")
151
+ with gr.Row():
152
+
153
+ def refresh_models(*inputs):
154
+ new_model_list = [
155
+ f for f in os.listdir(model_dir) if f != ".gitkeep"
156
+ ]
157
+ dd = inputs[0]
158
+ if dd in new_model_list:
159
+ selected = dd
160
+ elif len(new_model_list) > 0:
161
+ selected = new_model_list[0]
162
+ else:
163
+ selected = None
164
+ return gr.Dropdown.update(choices=new_model_list, value=selected)
165
+
166
+ with gr.Row():
167
+ self.params.model = gr.Dropdown(
168
+ choices=model_list,
169
+ value=(self.params.model if self.params.model in model_list else None),
170
+ label="Motion module",
171
+ type="value",
172
+ elem_id=f"{elemid_prefix}motion-module",
173
+ )
174
+ refresh_model = ToolButton(value="\U0001f504")
175
+ refresh_model.click(refresh_models, self.params.model, self.params.model)
176
+
177
+ self.params.format = gr.CheckboxGroup(
178
+ choices=["GIF", "MP4", "WEBP", "WEBM", "PNG", "TXT"],
179
+ label="Save format",
180
+ type="value",
181
+ elem_id=f"{elemid_prefix}save-format",
182
+ value=self.params.format,
183
+ )
184
+ with gr.Row():
185
+ self.params.enable = gr.Checkbox(
186
+ value=self.params.enable, label="Enable AnimateDiff",
187
+ elem_id=f"{elemid_prefix}enable"
188
+ )
189
+ self.params.video_length = gr.Number(
190
+ minimum=0,
191
+ value=self.params.video_length,
192
+ label="Number of frames",
193
+ precision=0,
194
+ elem_id=f"{elemid_prefix}video-length",
195
+ )
196
+ self.params.fps = gr.Number(
197
+ value=self.params.fps, label="FPS", precision=0,
198
+ elem_id=f"{elemid_prefix}fps"
199
+ )
200
+ self.params.loop_number = gr.Number(
201
+ minimum=0,
202
+ value=self.params.loop_number,
203
+ label="Display loop number",
204
+ precision=0,
205
+ elem_id=f"{elemid_prefix}loop-number",
206
+ )
207
+ with gr.Row():
208
+ self.params.closed_loop = gr.Radio(
209
+ choices=["N", "R-P", "R+P", "A"],
210
+ value=self.params.closed_loop,
211
+ label="Closed loop",
212
+ elem_id=f"{elemid_prefix}closed-loop",
213
+ )
214
+ self.params.batch_size = gr.Slider(
215
+ minimum=1,
216
+ maximum=32,
217
+ value=self.params.batch_size,
218
+ label="Context batch size",
219
+ step=1,
220
+ precision=0,
221
+ elem_id=f"{elemid_prefix}batch-size",
222
+ )
223
+ self.params.stride = gr.Number(
224
+ minimum=1,
225
+ value=self.params.stride,
226
+ label="Stride",
227
+ precision=0,
228
+ elem_id=f"{elemid_prefix}stride",
229
+ )
230
+ self.params.overlap = gr.Number(
231
+ minimum=-1,
232
+ value=self.params.overlap,
233
+ label="Overlap",
234
+ precision=0,
235
+ elem_id=f"{elemid_prefix}overlap",
236
+ )
237
+ with gr.Row():
238
+ self.params.interp = gr.Radio(
239
+ choices=["Off", "FILM"],
240
+ label="Frame Interpolation",
241
+ elem_id=f"{elemid_prefix}interp-choice",
242
+ value=self.params.interp
243
+ )
244
+ self.params.interp_x = gr.Number(
245
+ value=self.params.interp_x, label="Interp X", precision=0,
246
+ elem_id=f"{elemid_prefix}interp-x"
247
+ )
248
+ self.params.video_source = gr.Video(
249
+ value=self.params.video_source,
250
+ label="Video source",
251
+ )
252
+ def update_fps(video_source):
253
+ if video_source is not None and video_source != '':
254
+ cap = cv2.VideoCapture(video_source)
255
+ fps = int(cap.get(cv2.CAP_PROP_FPS))
256
+ cap.release()
257
+ return fps
258
+ else:
259
+ return int(self.params.fps.value)
260
+ self.params.video_source.change(update_fps, inputs=self.params.video_source, outputs=self.params.fps)
261
+ def update_frames(video_source):
262
+ if video_source is not None and video_source != '':
263
+ cap = cv2.VideoCapture(video_source)
264
+ frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
265
+ cap.release()
266
+ return frames
267
+ else:
268
+ return int(self.params.video_length.value)
269
+ self.params.video_source.change(update_frames, inputs=self.params.video_source, outputs=self.params.video_length)
270
+ self.params.video_path = gr.Textbox(
271
+ value=self.params.video_path,
272
+ label="Video path",
273
+ elem_id=f"{elemid_prefix}video-path"
274
+ )
275
+ if is_img2img:
276
+ with gr.Row():
277
+ self.params.latent_power = gr.Slider(
278
+ minimum=0.1,
279
+ maximum=10,
280
+ value=self.params.latent_power,
281
+ step=0.1,
282
+ label="Latent power",
283
+ elem_id=f"{elemid_prefix}latent-power",
284
+ )
285
+ self.params.latent_scale = gr.Slider(
286
+ minimum=1,
287
+ maximum=128,
288
+ value=self.params.latent_scale,
289
+ label="Latent scale",
290
+ elem_id=f"{elemid_prefix}latent-scale"
291
+ )
292
+ self.params.latent_power_last = gr.Slider(
293
+ minimum=0.1,
294
+ maximum=10,
295
+ value=self.params.latent_power_last,
296
+ step=0.1,
297
+ label="Optional latent power for last frame",
298
+ elem_id=f"{elemid_prefix}latent-power-last",
299
+ )
300
+ self.params.latent_scale_last = gr.Slider(
301
+ minimum=1,
302
+ maximum=128,
303
+ value=self.params.latent_scale_last,
304
+ label="Optional latent scale for last frame",
305
+ elem_id=f"{elemid_prefix}latent-scale-last"
306
+ )
307
+ self.params.last_frame = gr.Image(
308
+ label="Optional last frame. Leave it blank if you do not need one.",
309
+ type="pil",
310
+ )
311
+ with gr.Row():
312
+ unload = gr.Button(value="Move motion module to CPU (default if lowvram)")
313
+ remove = gr.Button(value="Remove motion module from any memory")
314
+ unload.click(fn=motion_module.unload)
315
+ remove.click(fn=motion_module.remove)
316
+ return self.register_unit(is_img2img)
317
+
318
+
319
+ def register_unit(self, is_img2img: bool):
320
+ unit = gr.State(value=AnimateDiffProcess)
321
+ (
322
+ AnimateDiffUiGroup.img2img_submit_button
323
+ if is_img2img
324
+ else AnimateDiffUiGroup.txt2img_submit_button
325
+ ).click(
326
+ fn=AnimateDiffProcess,
327
+ inputs=self.params.get_list(is_img2img),
328
+ outputs=unit,
329
+ queue=False,
330
+ )
331
+ return unit
332
+
333
+
334
+ @staticmethod
335
+ def on_after_component(component, **_kwargs):
336
+ elem_id = getattr(component, "elem_id", None)
337
+
338
+ if elem_id == "txt2img_generate":
339
+ AnimateDiffUiGroup.txt2img_submit_button = component
340
+ return
341
+
342
+ if elem_id == "img2img_generate":
343
+ AnimateDiffUiGroup.img2img_submit_button = component
344
+ return
345
+
346
+
347
+ @staticmethod
348
+ def on_before_ui():
349
+ AnimateDiffLCM.hack_kdiff_ui()