import re import torch from modules.processing import StableDiffusionProcessing, Processed from scripts.animatediff_logger import logger_animatediff as logger from scripts.animatediff_infotext import write_params_txt class AnimateDiffPromptSchedule: def __init__(self): self.prompt_map = None self.original_prompt = None def save_infotext_img(self, p: StableDiffusionProcessing): if self.prompt_map is not None: p.prompts = [self.original_prompt for _ in range(p.batch_size)] def save_infotext_txt(self, res: Processed): if self.prompt_map is not None: parts = res.info.split('\nNegative prompt: ', 1) if len(parts) > 1: res.info = f"{self.original_prompt}\nNegative prompt: {parts[1]}" for i in range(len(res.infotexts)): parts = res.infotexts[i].split('\nNegative prompt: ', 1) if len(parts) > 1: res.infotexts[i] = f"{self.original_prompt}\nNegative prompt: {parts[1]}" write_params_txt(res.info) def parse_prompt(self, p: StableDiffusionProcessing): if type(p.prompt) is not str: logger.warn("prompt is not str, cannot support prompt map") return lines = p.prompt.strip().split('\n') data = { 'head_prompts': [], 'mapp_prompts': {}, 'tail_prompts': [] } mode = 'head' for line in lines: if mode == 'head': if re.match(r'^\d+:', line): mode = 'mapp' else: data['head_prompts'].append(line) if mode == 'mapp': match = re.match(r'^(\d+): (.+)$', line) if match: frame, prompt = match.groups() data['mapp_prompts'][int(frame)] = prompt else: mode = 'tail' if mode == 'tail': data['tail_prompts'].append(line) if data['mapp_prompts']: logger.info("You are using prompt travel.") self.prompt_map = {} prompt_list = [] last_frame = 0 current_prompt = '' for frame, prompt in data['mapp_prompts'].items(): prompt_list += [current_prompt for _ in range(last_frame, frame)] last_frame = frame current_prompt = f"{', '.join(data['head_prompts'])}, {prompt}, {', '.join(data['tail_prompts'])}" self.prompt_map[frame] = current_prompt prompt_list += [current_prompt for _ in range(last_frame, p.batch_size)] assert len(prompt_list) == p.batch_size, f"prompt_list length {len(prompt_list)} != batch_size {p.batch_size}" self.original_prompt = p.prompt p.prompt = prompt_list * p.n_iter def single_cond(self, center_frame, video_length: int, cond: torch.Tensor, closed_loop = False): if closed_loop: key_prev = list(self.prompt_map.keys())[-1] key_next = list(self.prompt_map.keys())[0] else: key_prev = list(self.prompt_map.keys())[0] key_next = list(self.prompt_map.keys())[-1] for p in self.prompt_map.keys(): if p > center_frame: key_next = p break key_prev = p dist_prev = center_frame - key_prev if dist_prev < 0: dist_prev += video_length dist_next = key_next - center_frame if dist_next < 0: dist_next += video_length if key_prev == key_next or dist_prev + dist_next == 0: return cond[key_prev] if isinstance(cond, torch.Tensor) else {k: v[key_prev] for k, v in cond.items()} rate = dist_prev / (dist_prev + dist_next) if isinstance(cond, torch.Tensor): return AnimateDiffPromptSchedule.slerp(cond[key_prev], cond[key_next], rate) else: # isinstance(cond, dict) return { k: AnimateDiffPromptSchedule.slerp(v[key_prev], v[key_next], rate) for k, v in cond.items() } def multi_cond(self, cond: torch.Tensor, closed_loop = False): if self.prompt_map is None: return cond cond_list = [] if isinstance(cond, torch.Tensor) else {k: [] for k in cond.keys()} for i in range(cond.shape[0]): single_cond = self.single_cond(i, cond.shape[0], cond, closed_loop) if isinstance(cond, torch.Tensor): cond_list.append(single_cond) else: for k, v in single_cond.items(): cond_list[k].append(v) if isinstance(cond, torch.Tensor): return torch.stack(cond_list).to(cond.dtype).to(cond.device) else: return {k: torch.stack(v).to(cond[k].dtype).to(cond[k].device) for k, v in cond_list.items()} @staticmethod def slerp( v0: torch.Tensor, v1: torch.Tensor, t: float, DOT_THRESHOLD: float = 0.9995 ) -> torch.Tensor: u0 = v0 / v0.norm() u1 = v1 / v1.norm() dot = (u0 * u1).sum() if dot.abs() > DOT_THRESHOLD: return (1.0 - t) * v0 + t * v1 omega = dot.acos() return (((1.0 - t) * omega).sin() * v0 + (t * omega).sin() * v1) / omega.sin()