import copy import os from dataclasses import dataclass from typing import List, Union import cv2 import numpy as np from PIL import Image import insightface from insightface.app.common import Face from scripts.reactor_globals import FACE_MODELS_PATH from scripts.reactor_helpers import ( get_image_md5hash, get_Device, save_face_model, load_face_model, get_images_from_folder, get_images_from_list, set_SDNEXT ) from scripts.console_log_patch import apply_logging_patch from modules.face_restoration import FaceRestoration try: # A1111 from modules import codeformer_model, gfpgan_model except: # SD.Next from modules.postprocess import codeformer_model, gfpgan_model set_SDNEXT() from modules.upscaler import UpscalerData from modules.shared import state from scripts.reactor_logger import logger from reactor_modules.reactor_mask import apply_face_mask try: from modules.paths_internal import models_path except: try: from modules.paths import models_path except: models_path = os.path.abspath("models") import warnings np.warnings = warnings np.warnings.filterwarnings('ignore') DEVICE = get_Device() if DEVICE == "CUDA": PROVIDERS = ["CUDAExecutionProvider"] else: PROVIDERS = ["CPUExecutionProvider"] @dataclass class EnhancementOptions: do_restore_first: bool = True scale: int = 1 upscaler: UpscalerData = None upscale_visibility: float = 0.5 face_restorer: FaceRestoration = None restorer_visibility: float = 0.5 codeformer_weight: float = 0.5 MESSAGED_STOPPED = False MESSAGED_SKIPPED = False def reset_messaged(): global MESSAGED_STOPPED, MESSAGED_SKIPPED if not state.interrupted: MESSAGED_STOPPED = False if not state.skipped: MESSAGED_SKIPPED = False def check_process_halt(msgforced: bool = False): global MESSAGED_STOPPED, MESSAGED_SKIPPED if state.interrupted: if not MESSAGED_STOPPED or msgforced: logger.status("Stopped by User") MESSAGED_STOPPED = True return True if state.skipped: if not MESSAGED_SKIPPED or msgforced: logger.status("Skipped by User") MESSAGED_SKIPPED = True return True return False FS_MODEL = None ANALYSIS_MODEL = None MASK_MODEL = None CURRENT_FS_MODEL_PATH = None CURRENT_MASK_MODEL_PATH = None SOURCE_FACES = None SOURCE_IMAGE_HASH = None TARGET_FACES = None TARGET_IMAGE_HASH = None SOURCE_FACES_LIST = [] SOURCE_IMAGE_LIST_HASH = [] def clear_faces_list(): global SOURCE_FACES_LIST, SOURCE_IMAGE_LIST_HASH SOURCE_FACES_LIST = [] SOURCE_IMAGE_LIST_HASH = [] logger.status("Source Images Hash has been reset (for Multiple or Folder Source)") def getAnalysisModel(): global ANALYSIS_MODEL if ANALYSIS_MODEL is None: ANALYSIS_MODEL = insightface.app.FaceAnalysis( name="buffalo_l", providers=PROVIDERS, root=os.path.join(models_path, "insightface") # note: allowed_modules=['detection', 'genderage'] ) return ANALYSIS_MODEL def getFaceSwapModel(model_path: str): global FS_MODEL global CURRENT_FS_MODEL_PATH if CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path: CURRENT_FS_MODEL_PATH = model_path FS_MODEL = insightface.model_zoo.get_model(model_path, providers=PROVIDERS) return FS_MODEL def restore_face(image: Image, enhancement_options: EnhancementOptions): result_image = image if check_process_halt(msgforced=True): return result_image if enhancement_options.face_restorer is not None: original_image = result_image.copy() logger.status("Restoring the face with %s", enhancement_options.face_restorer.name()) numpy_image = np.array(result_image) if enhancement_options.face_restorer.name() == "CodeFormer": numpy_image = codeformer_model.codeformer.restore( numpy_image, w=enhancement_options.codeformer_weight ) else: # GFPGAN: numpy_image = gfpgan_model.gfpgan_fix_faces(numpy_image) # numpy_image = enhancement_options.face_restorer.restore(numpy_image) restored_image = Image.fromarray(numpy_image) result_image = Image.blend( original_image, restored_image, enhancement_options.restorer_visibility ) return result_image def upscale_image(image: Image, enhancement_options: EnhancementOptions): result_image = image if check_process_halt(msgforced=True): return result_image if enhancement_options.upscaler is not None and enhancement_options.upscaler.name != "None": original_image = result_image.copy() logger.status( "Upscaling with %s scale = %s", enhancement_options.upscaler.name, enhancement_options.scale, ) result_image = enhancement_options.upscaler.scaler.upscale( original_image, enhancement_options.scale, enhancement_options.upscaler.data_path ) if enhancement_options.scale == 1: result_image = Image.blend( original_image, result_image, enhancement_options.upscale_visibility ) return result_image def enhance_image(image: Image, enhancement_options: EnhancementOptions): result_image = image if check_process_halt(msgforced=True): return result_image if enhancement_options.do_restore_first: result_image = restore_face(result_image, enhancement_options) result_image = upscale_image(result_image, enhancement_options) else: result_image = upscale_image(result_image, enhancement_options) result_image = restore_face(result_image, enhancement_options) return result_image def enhance_image_and_mask(image: Image.Image, enhancement_options: EnhancementOptions,target_img_orig:Image.Image,entire_mask_image:Image.Image)->Image.Image: result_image = image if check_process_halt(msgforced=True): return result_image if enhancement_options.do_restore_first: result_image = restore_face(result_image, enhancement_options) result_image = Image.composite(result_image,target_img_orig,entire_mask_image) result_image = upscale_image(result_image, enhancement_options) else: result_image = upscale_image(result_image, enhancement_options) entire_mask_image = Image.fromarray(cv2.resize(np.array(entire_mask_image),result_image.size, interpolation=cv2.INTER_AREA)).convert("L") result_image = Image.composite(result_image,target_img_orig,entire_mask_image) result_image = restore_face(result_image, enhancement_options) return result_image def get_gender(face, face_index): gender = [ x.sex for x in face ] gender.reverse() try: face_gender = gender[face_index] except: logger.error("Gender Detection: No face with index = %s was found", face_index) return "None" return face_gender def get_face_gender( face, face_index, gender_condition, operated: str, gender_detected, ): face_gender = gender_detected if face_gender == "None": return None, 0 logger.status("%s Face %s: Detected Gender -%s-", operated, face_index, face_gender) if (gender_condition == 1 and face_gender == "F") or (gender_condition == 2 and face_gender == "M"): logger.status("OK - Detected Gender matches Condition") try: return sorted(face, key=lambda x: x.bbox[0])[face_index], 0 except IndexError: return None, 0 else: logger.status("WRONG - Detected Gender doesn't match Condition") return sorted(face, key=lambda x: x.bbox[0])[face_index], 1 def get_face_age(face, face_index): age = [ x.age for x in face ] age.reverse() try: face_age = age[face_index] except: logger.error("Age Detection: No face with index = %s was found", face_index) return "None" return face_age def half_det_size(det_size): logger.status("Trying to halve 'det_size' parameter") return (det_size[0] // 2, det_size[1] // 2) def analyze_faces(img_data: np.ndarray, det_size=(640, 640)): logger.info("Applied Execution Provider: %s", PROVIDERS[0]) face_analyser = copy.deepcopy(getAnalysisModel()) face_analyser.prepare(ctx_id=0, det_size=det_size) return face_analyser.get(img_data) def get_face_single(img_data: np.ndarray, face, face_index=0, det_size=(640, 640), gender_source=0, gender_target=0): buffalo_path = os.path.join(models_path, "insightface/models/buffalo_l.zip") if os.path.exists(buffalo_path): os.remove(buffalo_path) face_age = "None" try: face_age = get_face_age(face, face_index) except: logger.error("Cannot detect any Age for Face index = %s", face_index) face_gender = "None" try: face_gender = get_gender(face, face_index) gender_detected = face_gender face_gender = "Female" if face_gender == "F" else ("Male" if face_gender == "M" else "None") except: logger.error("Cannot detect any Gender for Face index = %s", face_index) if gender_source != 0: if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320: det_size_half = half_det_size(det_size) return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target) faces, wrong_gender = get_face_gender(face,face_index,gender_source,"Source",gender_detected) return faces, wrong_gender, face_age, face_gender if gender_target != 0: if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320: det_size_half = half_det_size(det_size) return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target) faces, wrong_gender = get_face_gender(face,face_index,gender_target,"Target",gender_detected) return faces, wrong_gender, face_age, face_gender if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320: det_size_half = half_det_size(det_size) return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target) try: return sorted(face, key=lambda x: x.bbox[0])[face_index], 0, face_age, face_gender except IndexError: return None, 0, face_age, face_gender def swap_face( source_img: Image.Image, target_img: Image.Image, model: Union[str, None] = None, source_faces_index: List[int] = [0], faces_index: List[int] = [0], enhancement_options: Union[EnhancementOptions, None] = None, gender_source: int = 0, gender_target: int = 0, source_hash_check: bool = True, target_hash_check: bool = False, device: str = "CPU", mask_face: bool = False, select_source: int = 0, face_model: str = "None", source_folder: str = "", source_imgs: Union[List, None] = None, ): global SOURCE_FACES, SOURCE_IMAGE_HASH, TARGET_FACES, TARGET_IMAGE_HASH, PROVIDERS, SOURCE_FACES_LIST, SOURCE_IMAGE_LIST_HASH result_image = target_img PROVIDERS = ["CUDAExecutionProvider"] if device == "CUDA" else ["CPUExecutionProvider"] if check_process_halt(): return result_image, [], 0 if model is not None: if isinstance(source_img, str): # source_img is a base64 string import base64, io if 'base64,' in source_img: # check if the base64 string has a data URL scheme # split the base64 string to get the actual base64 encoded image data base64_data = source_img.split('base64,')[-1] # decode base64 string to bytes img_bytes = base64.b64decode(base64_data) else: # if no data URL scheme, just decode img_bytes = base64.b64decode(source_img) source_img = Image.open(io.BytesIO(img_bytes)) target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR) target_img_orig = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR) entire_mask_image = np.zeros_like(np.array(target_img)) output: List = [] output_info: str = "" swapped = 0 # ***************** # SWAP from FOLDER or MULTIPLE images: if (select_source == 0 and source_imgs is not None) or (select_source == 2 and (source_folder is not None and source_folder != "")): result = [] source_images = get_images_from_folder(source_folder) if select_source == 2 else get_images_from_list(source_imgs) if len(source_images) > 0: source_img_ff = [] source_faces_ff = [] for i, source_image in enumerate(source_images): source_image = cv2.cvtColor(np.array(source_image), cv2.COLOR_RGB2BGR) source_img_ff.append(source_image) if source_hash_check: source_image_md5hash = get_image_md5hash(source_image) if len(SOURCE_IMAGE_LIST_HASH) == 0: SOURCE_IMAGE_LIST_HASH = [source_image_md5hash] source_image_same = False elif len(SOURCE_IMAGE_LIST_HASH) == i: SOURCE_IMAGE_LIST_HASH.append(source_image_md5hash) source_image_same = False else: source_image_same = True if SOURCE_IMAGE_LIST_HASH[i] == source_image_md5hash else False if not source_image_same: SOURCE_IMAGE_LIST_HASH[i] = source_image_md5hash logger.info("(Image %s) Source Image MD5 Hash = %s", i, SOURCE_IMAGE_LIST_HASH[i]) logger.info("(Image %s) Source Image the Same? %s", i, source_image_same) if len(SOURCE_FACES_LIST) == 0: logger.status(f"Analyzing Source Image {i}...") source_faces = analyze_faces(source_image) SOURCE_FACES_LIST = [source_faces] elif len(SOURCE_FACES_LIST) == i and not source_image_same: logger.status(f"Analyzing Source Image {i}...") source_faces = analyze_faces(source_image) SOURCE_FACES_LIST.append(source_faces) elif len(SOURCE_FACES_LIST) != i and not source_image_same: logger.status(f"Analyzing Source Image {i}...") source_faces = analyze_faces(source_image) SOURCE_FACES_LIST[i] = source_faces elif source_image_same: logger.status("(Image %s) Using Hashed Source Face(s) Model...", i) source_faces = SOURCE_FACES_LIST[i] else: logger.status(f"Analyzing Source Image {i}...") source_faces = analyze_faces(source_image) if source_faces is not None: source_faces_ff.append(source_faces) if len(source_faces_ff) > 0: if target_hash_check: target_image_md5hash = get_image_md5hash(target_img) if TARGET_IMAGE_HASH is None: TARGET_IMAGE_HASH = target_image_md5hash target_image_same = False else: target_image_same = True if TARGET_IMAGE_HASH == target_image_md5hash else False if not target_image_same: TARGET_IMAGE_HASH = target_image_md5hash logger.info("Target Image MD5 Hash = %s", TARGET_IMAGE_HASH) logger.info("Target Image the Same? %s", target_image_same) if TARGET_FACES is None or not target_image_same: logger.status("Analyzing Target Image...") target_faces = analyze_faces(target_img) TARGET_FACES = target_faces elif target_image_same: logger.status("Using Hashed Target Face(s) Model...") target_faces = TARGET_FACES else: logger.status("Analyzing Target Image...") target_faces = analyze_faces(target_img) for i,source_faces in enumerate(source_faces_ff): logger.status("(Image %s) Detecting Source Face, Index = %s", i, source_faces_index[0]) source_face, wrong_gender, source_age, source_gender = get_face_single(source_img_ff[i], source_faces, face_index=source_faces_index[0], gender_source=gender_source) if source_age != "None" or source_gender != "None": logger.status("(Image %s) Detected: -%s- y.o. %s", i, source_age, source_gender) if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index): logger.status("Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.") elif source_face is not None: result_image, output, swapped = operate(source_img_ff[i],target_img,target_img_orig,model,source_faces_index,faces_index,source_faces,target_faces,gender_source,gender_target,source_face,wrong_gender,source_age,source_gender,output,swapped,mask_face,entire_mask_image,enhancement_options) result.append(result_image) result = [result_image] if len(result) == 0 else result return result, output, swapped # END # ***************** # *********************** # SWAP from IMG or MODEL: else: if select_source == 0 and source_img is not None: source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR) if source_hash_check: source_image_md5hash = get_image_md5hash(source_img) if SOURCE_IMAGE_HASH is None: SOURCE_IMAGE_HASH = source_image_md5hash source_image_same = False else: source_image_same = True if SOURCE_IMAGE_HASH == source_image_md5hash else False if not source_image_same: SOURCE_IMAGE_HASH = source_image_md5hash logger.info("Source Image MD5 Hash = %s", SOURCE_IMAGE_HASH) logger.info("Source Image the Same? %s", source_image_same) if SOURCE_FACES is None or not source_image_same: logger.status("Analyzing Source Image...") source_faces = analyze_faces(source_img) SOURCE_FACES = source_faces elif source_image_same: logger.status("Using Hashed Source Face(s) Model...") source_faces = SOURCE_FACES else: logger.status("Analyzing Source Image...") source_faces = analyze_faces(source_img) elif select_source == 1 and (face_model is not None and face_model != "None"): source_face_model = [load_face_model(face_model)] if source_face_model is not None: source_faces_index = [0] source_faces = source_face_model logger.status("Using Loaded Source Face Model...") else: logger.error(f"Cannot load Face Model File: {face_model}.safetensors") else: logger.error("Cannot detect any Source") return result_image, [], 0 if source_faces is not None: if target_hash_check: target_image_md5hash = get_image_md5hash(target_img) if TARGET_IMAGE_HASH is None: TARGET_IMAGE_HASH = target_image_md5hash target_image_same = False else: target_image_same = True if TARGET_IMAGE_HASH == target_image_md5hash else False if not target_image_same: TARGET_IMAGE_HASH = target_image_md5hash logger.info("Target Image MD5 Hash = %s", TARGET_IMAGE_HASH) logger.info("Target Image the Same? %s", target_image_same) if TARGET_FACES is None or not target_image_same: logger.status("Analyzing Target Image...") target_faces = analyze_faces(target_img) TARGET_FACES = target_faces elif target_image_same: logger.status("Using Hashed Target Face(s) Model...") target_faces = TARGET_FACES else: logger.status("Analyzing Target Image...") target_faces = analyze_faces(target_img) logger.status("Detecting Source Face, Index = %s", source_faces_index[0]) if select_source == 0 and source_img is not None: source_face, wrong_gender, source_age, source_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[0], gender_source=gender_source) else: source_face = sorted(source_faces, key=lambda x: x.bbox[0])[source_faces_index[0]] wrong_gender = 0 source_age = source_face["age"] source_gender = "Female" if source_face["gender"] == 0 else "Male" if source_age != "None" or source_gender != "None": logger.status("Detected: -%s- y.o. %s", source_age, source_gender) output_info = f"SourceFaceIndex={source_faces_index[0]};Age={source_age};Gender={source_gender}\n" output.append(output_info) if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index): logger.status("Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.") elif source_face is not None: result_image, output, swapped = operate(source_img,target_img,target_img_orig,model,source_faces_index,faces_index,source_faces,target_faces,gender_source,gender_target,source_face,wrong_gender,source_age,source_gender,output,swapped,mask_face,entire_mask_image,enhancement_options) else: logger.status("No source face(s) in the provided Index") else: logger.status("No source face(s) found") return result_image, output, swapped # END # ********************** return result_image, [], 0 def build_face_model(image: Image.Image, name: str): if image is None: error_msg = "Please load an Image" logger.error(error_msg) return error_msg if name is None: error_msg = "Please filled out the 'Face Model Name' field" logger.error(error_msg) return error_msg apply_logging_patch(1) image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) logger.status("Building Face Model...") face_model = analyze_faces(image) if face_model is not None and len(face_model) > 0: face_model_path = os.path.join(FACE_MODELS_PATH, name + ".safetensors") save_face_model(face_model[0],face_model_path) logger.status("--Done!--") done_msg = f"Face model has been saved to '{face_model_path}'" logger.status(done_msg) return done_msg else: no_face_msg = "No face found, please try another image" logger.error(no_face_msg) return no_face_msg def operate( source_img, target_img, target_img_orig, model, source_faces_index, faces_index, source_faces, target_faces, gender_source, gender_target, source_face, wrong_gender, source_age, source_gender, output, swapped, mask_face, entire_mask_image, enhancement_options, ): result = target_img face_swapper = getFaceSwapModel(model) source_face_idx = 0 for face_num in faces_index: if check_process_halt(): return result_image, [], 0 if len(source_faces_index) > 1 and source_face_idx > 0: logger.status("Detecting Source Face, Index = %s", source_faces_index[source_face_idx]) source_face, wrong_gender, source_age, source_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[source_face_idx], gender_source=gender_source) if source_age != "None" or source_gender != "None": logger.status("Detected: -%s- y.o. %s", source_age, source_gender) output_info = f"SourceFaceIndex={source_faces_index[source_face_idx]};Age={source_age};Gender={source_gender}\n" output.append(output_info) source_face_idx += 1 if source_face is not None and wrong_gender == 0: logger.status("Detecting Target Face, Index = %s", face_num) target_face, wrong_gender, target_age, target_gender = get_face_single(target_img, target_faces, face_index=face_num, gender_target=gender_target) if target_age != "None" or target_gender != "None": logger.status("Detected: -%s- y.o. %s", target_age, target_gender) output_info = f"TargetFaceIndex={face_num};Age={target_age};Gender={target_gender}\n" output.append(output_info) if target_face is not None and wrong_gender == 0: logger.status("Swapping Source into Target") swapped_image = face_swapper.get(result, target_face, source_face) if mask_face: result = apply_face_mask(swapped_image=swapped_image,target_image=result,target_face=target_face,entire_mask_image=entire_mask_image) else: result = swapped_image swapped += 1 elif wrong_gender == 1: wrong_gender = 0 if source_face_idx == len(source_faces_index): result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) if enhancement_options is not None and len(source_faces_index) > 1: result_image = enhance_image(result_image, enhancement_options) return result_image, output, swapped else: logger.status(f"No target face found for {face_num}") elif wrong_gender == 1: wrong_gender = 0 if source_face_idx == len(source_faces_index): result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) if enhancement_options is not None and len(source_faces_index) > 1: result_image = enhance_image(result_image, enhancement_options) return result_image, output, swapped else: logger.status(f"No source face found for face number {source_face_idx}.") result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) if enhancement_options is not None and swapped > 0: if mask_face and entire_mask_image is not None: result_image = enhance_image_and_mask(result_image, enhancement_options,Image.fromarray(target_img_orig),Image.fromarray(entire_mask_image).convert("L")) else: result_image = enhance_image(result_image, enhancement_options) elif mask_face and entire_mask_image is not None and swapped > 0: result_image = Image.composite(result_image,Image.fromarray(target_img_orig),Image.fromarray(entire_mask_image).convert("L")) return result_image, output, swapped