import json from datasets import Dataset, DatasetDict from util import PARTITIONING_CATS def construct_hf_dataset(metadata_file: str = "processed_sources.jsonl"): """Construct a HF DatasetDict class from the HICRIC processed data dir, and push to hub.""" def data_generator(cat: str): def validate_tags(tags, partitioning_cats=PARTITIONING_CATS): # Find the intersection of the two lists matches = [tag for tag in tags if tag in partitioning_cats] # Raise an exception if there are none or two or more matches if len(matches) == 0 or len(matches) >= 2: raise ValueError( f"The list of tags must contain exactly one key from the partitioning categories: {partitioning_cats}." ) return True # If the tags are valid # Open metadata file with open(metadata_file, "r") as metadata_f: for idx, line in enumerate(metadata_f): obj = json.loads(line) local_processed_path = obj["local_processed_path"] file_tags = obj["tags"] date_accessed = obj["date_accessed"] url = obj["url"] raw_md5 = obj["md5"] # Only proceed for relevant partition cat _valid = validate_tags(file_tags) if cat not in file_tags: continue # Read the JSONL file pointed to by the `local_processed_path` with open(local_processed_path, "r") as data_file: for _idx, data_line in enumerate(data_file): data_obj = json.loads(data_line, strict=False) # Get line specific data text = data_obj.get("text", "") line_tags = data_obj.get("tags", []) if len(text) == 0: continue if len(line_tags) > 0: tags = file_tags + line_tags else: tags = file_tags rec = { "text": data_obj.get("text", ""), "tags": tags, "date_accessed": date_accessed, "source_url": url, "source_md5": raw_md5, "relative_path": local_processed_path, } # Add some specific partition keys if cat == "case-description": rec["decision"] = data_obj.get("decision", "unknown") rec["appeal_type"] = data_obj.get("appeal_type", "unknown") yield rec # Create a DatasetDict to store sub-directory datasets dataset_dict = DatasetDict() for cat in PARTITIONING_CATS: sub_dataset = Dataset.from_generator( generator=data_generator, gen_kwargs={"cat": cat} ) dataset_dict[cat] = sub_dataset # Save each sub-directory dataset as a separate dataset within a DatasetDict for k, v in dataset_dict.items(): v.push_to_hub("persius/hicric", k, private=True) # dataset_dict.save_to_disk("./arrow_data") return None if __name__ == "__main__": construct_hf_dataset()