Datasets:

Modalities:
Text
Languages:
Spanish
Libraries:
Datasets
License:
File size: 2,975 Bytes
db0a277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
annotations_creators:
- expert-generated
languages:
- es
multilinguality:
- monolingual
task_categories:
- text-classification
- multi-label-text-classification
task_ids:
- named-entity-recognition
---

# PharmaCoNER Corpus

## BibTeX  citation
If you use these resources in your work, please cite the following paper:

```bibtex
TO DO
```

## Digital Object Identifier (DOI) and access to dataset files

https://zenodo.org/record/4270158#.YTnXP0MzY0F

## Introduction

TO DO: This is a dataset for Named Entity Recognition (NER) from...

### Supported Tasks and Leaderboards

Named Entities Recognition, Language Model

### Languages

ES - Spanish

### Directory structure

* pharmaconer.py
* dev.conll
* test.conll
* train.conll
* README.md

## Dataset Structure

### Data Instances

Three four-column files, one for each split.

### Data Fields

Every file has four columns:
* 1st column: Word form or punctuation symbol 
* 2nd column: Original BRAT file name
* 3rd column: Spans
* 4th column: IOB tag

### Example:
<pre>
La                S0004-06142006000900008-1  123_125  O
paciente          S0004-06142006000900008-1  126_134  O
tenía             S0004-06142006000900008-1  135_140  O
antecedentes      S0004-06142006000900008-1  141_153  O
de                S0004-06142006000900008-1  154_156  O
hipotiroidismo    S0004-06142006000900008-1  157_171  O
,                 S0004-06142006000900008-1  171_172  O
hipertensión      S0004-06142006000900008-1  173_185  O
arterial          S0004-06142006000900008-1  186_194  O
en                S0004-06142006000900008-1  195_197  O
tratamiento       S0004-06142006000900008-1  198_209  O
habitual          S0004-06142006000900008-1  210_218  O
con               S0004-06142006000900008-1  219-222  O
atenolol          S0004-06142006000900008-1  223_231  B-NORMALIZABLES
y                 S0004-06142006000900008-1  232_233  O
enalapril         S0004-06142006000900008-1  234_243  B-NORMALIZABLES
</pre>

### Data Splits

* train: 8,074 tokens
* development: 3,764 tokens
* test: 3,931 tokens

## Dataset Creation

### Methodology

TO DO

### Curation Rationale

For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.

### Source Data

#### Initial Data Collection and Normalization

TO DO

#### Who are the source language producers?

TO DO

### Annotations

#### Annotation process

TO DO

#### Who are the annotators?

TO DO

### Dataset Curators

TO DO: Martin?

### Personal and Sensitive Information

No personal or sensitive information included.

## Contact

TO DO: Casimiro?

## License

<a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Attribution 4.0 International License" style="border-width:0" src="https://chriszabriskie.com/img/cc-by.png" width="100"/></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Attribution 4.0 International License</a>.