Datasets:

Modalities:
Text
Languages:
Spanish
Libraries:
Datasets
License:
mapama247 commited on
Commit
4c89b4f
·
1 Parent(s): b35998e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -19
README.md CHANGED
@@ -13,14 +13,16 @@ task_categories:
13
  - token-classification
14
  task_ids:
15
  - named-entity-recognition
16
- licenses:
17
- - cc-by-4-0
18
  ---
19
 
20
- # PharmaCoNER Corpus
21
 
22
  ## Dataset Description
23
 
 
 
 
 
24
  ### Dataset Summary
25
 
26
  Manually classified collection of clinical case studies derived from the Spanish Clinical Case Corpus (SPACCC), an open access electronic library that gathers Spanish medical publications from [SciELO](https://scielo.org/).
@@ -37,17 +39,13 @@ This dataset was designed for the PharmaCoNER task, sponsored by [Plan de Impuls
37
 
38
  For further information, please visit [the official website](https://temu.bsc.es/pharmaconer/).
39
 
40
- ## Digital Object Identifier (DOI) and access to dataset files
41
-
42
- https://zenodo.org/record/4270158
43
-
44
  ### Supported Tasks
45
 
46
- Named Entity Recognition
47
 
48
  ### Languages
49
 
50
- ES - Spanish
51
 
52
  ### Directory Structure
53
 
@@ -93,9 +91,11 @@ enalapril S0004-06142006000900008-1 234_243 B-NORMALIZABLES
93
 
94
  ### Data Splits
95
 
96
- * train: 8,129 sentences
97
- * validation: 3,787 sentences
98
- * test: 3,952 sentences
 
 
99
 
100
  ## Dataset Creation
101
 
@@ -121,7 +121,7 @@ The annotation process of the PharmaCoNER corpus was inspired by previous annota
121
 
122
  #### Who are the annotators?
123
 
124
- Practicing physicians and medicinal chemistry experts.
125
 
126
  ### Personal and Sensitive Information
127
 
@@ -133,14 +133,8 @@ No personal or sensitive information included.
133
 
134
  The Text Mining Unit from Barcelona Supercomputing center.
135
 
136
- ### Contact
137
-
138
139
-
140
  ### Citation Information
141
 
142
- If you use these resources in your work, please cite the following paper:
143
-
144
  ```bibtex
145
  @inproceedings{,
146
  title = "PharmaCoNER: Pharmacological Substances, Compounds and proteins Named Entity Recognition track",
@@ -161,6 +155,10 @@ If you use these resources in your work, please cite the following paper:
161
  }
162
  ```
163
 
 
 
 
 
164
  ### Funding
165
 
166
  This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.
 
13
  - token-classification
14
  task_ids:
15
  - named-entity-recognition
 
 
16
  ---
17
 
18
+ # PharmaCoNER
19
 
20
  ## Dataset Description
21
 
22
+ - **Homepage:** [zenodo](https://zenodo.org/record/4270158)
23
+ - **Paper:** [PharmaCoNER: Pharmacological Substances, Compounds and proteins Named Entity Recognition track](https://aclanthology.org/D19-5701/)
24
+ - **Point of Contact:** [email protected]
25
+
26
  ### Dataset Summary
27
 
28
  Manually classified collection of clinical case studies derived from the Spanish Clinical Case Corpus (SPACCC), an open access electronic library that gathers Spanish medical publications from [SciELO](https://scielo.org/).
 
39
 
40
  For further information, please visit [the official website](https://temu.bsc.es/pharmaconer/).
41
 
 
 
 
 
42
  ### Supported Tasks
43
 
44
+ Named Entity Recognition (NER)
45
 
46
  ### Languages
47
 
48
+ - Spanish (es)
49
 
50
  ### Directory Structure
51
 
 
91
 
92
  ### Data Splits
93
 
94
+ | Split | Size |
95
+ | ------------- | ------------- |
96
+ | `train` | 8,129 |
97
+ | `dev` | 3,787 |
98
+ | `test` | 3,952 |
99
 
100
  ## Dataset Creation
101
 
 
121
 
122
  #### Who are the annotators?
123
 
124
+ Practicing physicians and medicinal chemistry experts.
125
 
126
  ### Personal and Sensitive Information
127
 
 
133
 
134
  The Text Mining Unit from Barcelona Supercomputing center.
135
 
 
 
 
 
136
  ### Citation Information
137
 
 
 
138
  ```bibtex
139
  @inproceedings{,
140
  title = "PharmaCoNER: Pharmacological Substances, Compounds and proteins Named Entity Recognition track",
 
155
  }
156
  ```
157
 
158
+ ### Contact Information
159
+
160
+ For further information, send an email to [email protected].
161
+
162
  ### Funding
163
 
164
  This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.