Datasets:

Modalities:
Text
Languages:
Spanish
Libraries:
Datasets
License:
mapama247 commited on
Commit
69d818e
·
1 Parent(s): c720ab1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -29
README.md CHANGED
@@ -18,7 +18,7 @@ licenses:
18
 
19
  ## Introduction
20
 
21
- This dataset is designed for the PharmaCoNER task, sponsored by Plan de Impulso de las Tecnologías del Lenguaje (Plan TL).
22
 
23
  It is a manually classified collection of clinical case studies derived from the Spanish Clinical Case Corpus (SPACCC), an open access electronic library that gathers Spanish medical publications from SciELO (Scientific Electronic Library Online).
24
 
@@ -32,29 +32,6 @@ The original dataset was distributed in Brat format (https://brat.nlplab.org/sta
32
 
33
  For further information, please visit [the official website](https://temu.bsc.es/pharmaconer/).
34
 
35
- ## BibTeX citation
36
- If you use these resources in your work, please cite the following paper:
37
-
38
- ```bibtex
39
- @inproceedings{,
40
- title = "PharmaCoNER: Pharmacological Substances, Compounds and proteins Named Entity Recognition track",
41
- author = "Gonzalez-Agirre, Aitor and
42
- Marimon, Montserrat and
43
- Intxaurrondo, Ander and
44
- Rabal, Obdulia and
45
- Villegas, Marta and
46
- Krallinger, Martin",
47
- booktitle = "Proceedings of The 5th Workshop on BioNLP Open Shared Tasks",
48
- month = nov,
49
- year = "2019",
50
- address = "Hong Kong, China",
51
- publisher = "Association for Computational Linguistics",
52
- url = "https://aclanthology.org/D19-5701",
53
- doi = "10.18653/v1/D19-5701",
54
- pages = "1--10",
55
- }
56
- ```
57
-
58
  ## Digital Object Identifier (DOI) and access to dataset files
59
 
60
  https://zenodo.org/record/4270158#.YTnXP0MzY0F
@@ -111,9 +88,9 @@ enalapril S0004-06142006000900008-1 234_243 B-NORMALIZABLES
111
 
112
  ### Data Splits
113
 
114
- * train: 8,074 tokens
115
- * development: 3,764 tokens
116
- * test: 3,931 tokens
117
 
118
  ## Dataset Creation
119
 
@@ -129,11 +106,11 @@ For compatibility with similar datasets in other languages, we followed as close
129
 
130
  #### Initial Data Collection and Normalization
131
 
132
- TO DO
133
 
134
  #### Who are the source language producers?
135
 
136
- TO DO
137
 
138
  ### Annotations
139
 
@@ -157,6 +134,29 @@ No personal or sensitive information included.
157
 
158
159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160
  ## License
161
 
162
  <a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Attribution 4.0 International License" style="border-width:0" src="https://chriszabriskie.com/img/cc-by.png" width="100"/></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Attribution 4.0 International License</a>.
 
18
 
19
  ## Introduction
20
 
21
+ This dataset was designed for the PharmaCoNER task, sponsored by Plan de Impulso de las Tecnologías del Lenguaje (Plan TL).
22
 
23
  It is a manually classified collection of clinical case studies derived from the Spanish Clinical Case Corpus (SPACCC), an open access electronic library that gathers Spanish medical publications from SciELO (Scientific Electronic Library Online).
24
 
 
32
 
33
  For further information, please visit [the official website](https://temu.bsc.es/pharmaconer/).
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  ## Digital Object Identifier (DOI) and access to dataset files
36
 
37
  https://zenodo.org/record/4270158#.YTnXP0MzY0F
 
88
 
89
  ### Data Splits
90
 
91
+ * train: 8,130 sentences
92
+ * development: 3,788 sentences
93
+ * test: 3,953 sentences
94
 
95
  ## Dataset Creation
96
 
 
106
 
107
  #### Initial Data Collection and Normalization
108
 
109
+ Manually classified collection of clinical case report sections. The clinical cases were not restricted to a single medical discipline, covering a variety of medical disciplines, including oncology, urology, cardiology, pneumology or infectious diseases. This is key to cover a diverse set of chemicals and drugs.
110
 
111
  #### Who are the source language producers?
112
 
113
+ Humans, there is no machine generated data.
114
 
115
  ### Annotations
116
 
 
134
 
135
136
 
137
+ ## BibTeX citation
138
+ If you use these resources in your work, please cite the following paper:
139
+
140
+ ```bibtex
141
+ @inproceedings{,
142
+ title = "PharmaCoNER: Pharmacological Substances, Compounds and proteins Named Entity Recognition track",
143
+ author = "Gonzalez-Agirre, Aitor and
144
+ Marimon, Montserrat and
145
+ Intxaurrondo, Ander and
146
+ Rabal, Obdulia and
147
+ Villegas, Marta and
148
+ Krallinger, Martin",
149
+ booktitle = "Proceedings of The 5th Workshop on BioNLP Open Shared Tasks",
150
+ month = nov,
151
+ year = "2019",
152
+ address = "Hong Kong, China",
153
+ publisher = "Association for Computational Linguistics",
154
+ url = "https://aclanthology.org/D19-5701",
155
+ doi = "10.18653/v1/D19-5701",
156
+ pages = "1--10",
157
+ }
158
+ ```
159
+
160
  ## License
161
 
162
  <a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Attribution 4.0 International License" style="border-width:0" src="https://chriszabriskie.com/img/cc-by.png" width="100"/></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Attribution 4.0 International License</a>.