--- annotations_creators: - expert-generated languages: - es multilinguality: - monolingual task_categories: - text-classification - multi-label-text-classification task_ids: - named-entity-recognition --- # PharmaCoNER Corpus ## BibTeX citation If you use these resources in your work, please cite the following paper: ```bibtex TO DO ``` ## Digital Object Identifier (DOI) and access to dataset files https://zenodo.org/record/4270158#.YTnXP0MzY0F ## Introduction TO DO: This is a dataset for Named Entity Recognition (NER) from... ### Supported Tasks and Leaderboards Named Entities Recognition, Language Model ### Languages ES - Spanish ### Directory structure * pharmaconer.py * dev.conll * test.conll * train.conll * README.md ## Dataset Structure ### Data Instances Three four-column files, one for each split. ### Data Fields Every file has four columns: * 1st column: Word form or punctuation symbol * 2nd column: Original BRAT file name * 3rd column: Spans * 4th column: IOB tag ### Example:
La                S0004-06142006000900008-1  123_125  O
paciente          S0004-06142006000900008-1  126_134  O
tenía             S0004-06142006000900008-1  135_140  O
antecedentes      S0004-06142006000900008-1  141_153  O
de                S0004-06142006000900008-1  154_156  O
hipotiroidismo    S0004-06142006000900008-1  157_171  O
,                 S0004-06142006000900008-1  171_172  O
hipertensión      S0004-06142006000900008-1  173_185  O
arterial          S0004-06142006000900008-1  186_194  O
en                S0004-06142006000900008-1  195_197  O
tratamiento       S0004-06142006000900008-1  198_209  O
habitual          S0004-06142006000900008-1  210_218  O
con               S0004-06142006000900008-1  219-222  O
atenolol          S0004-06142006000900008-1  223_231  B-NORMALIZABLES
y                 S0004-06142006000900008-1  232_233  O
enalapril         S0004-06142006000900008-1  234_243  B-NORMALIZABLES
### Data Splits * train: 8,074 tokens * development: 3,764 tokens * test: 3,931 tokens ## Dataset Creation ### Methodology TO DO ### Curation Rationale For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines. ### Source Data #### Initial Data Collection and Normalization TO DO #### Who are the source language producers? TO DO ### Annotations #### Annotation process TO DO #### Who are the annotators? TO DO ### Dataset Curators TO DO: Martin? ### Personal and Sensitive Information No personal or sensitive information included. ## Contact TO DO: Casimiro? ## License Attribution 4.0 International License
This work is licensed under a Attribution 4.0 International License.