--- annotations_creators: - expert-generated languages: - es multilinguality: - monolingual task_categories: - text-classification - multi-label-text-classification task_ids: - named-entity-recognition --- # PharmaCoNER Corpus ## BibTeX citation If you use these resources in your work, please cite the following paper: ```bibtex TO DO ``` ## Digital Object Identifier (DOI) and access to dataset files https://zenodo.org/record/4270158#.YTnXP0MzY0F ## Introduction TO DO: This is a dataset for Named Entity Recognition (NER) from... ### Supported Tasks and Leaderboards Named Entities Recognition, Language Model ### Languages ES - Spanish ### Directory structure * pharmaconer.py * dev.conll * test.conll * train.conll * README.md ## Dataset Structure ### Data Instances Three four-column files, one for each split. ### Data Fields Every file has four columns: * 1st column: Word form or punctuation symbol * 2nd column: Original BRAT file name * 3rd column: Spans * 4th column: IOB tag ### Example:
La S0004-06142006000900008-1 123_125 O paciente S0004-06142006000900008-1 126_134 O tenÃa S0004-06142006000900008-1 135_140 O antecedentes S0004-06142006000900008-1 141_153 O de S0004-06142006000900008-1 154_156 O hipotiroidismo S0004-06142006000900008-1 157_171 O , S0004-06142006000900008-1 171_172 O hipertensión S0004-06142006000900008-1 173_185 O arterial S0004-06142006000900008-1 186_194 O en S0004-06142006000900008-1 195_197 O tratamiento S0004-06142006000900008-1 198_209 O habitual S0004-06142006000900008-1 210_218 O con S0004-06142006000900008-1 219-222 O atenolol S0004-06142006000900008-1 223_231 B-NORMALIZABLES y S0004-06142006000900008-1 232_233 O enalapril S0004-06142006000900008-1 234_243 B-NORMALIZABLES### Data Splits * train: 8,074 tokens * development: 3,764 tokens * test: 3,931 tokens ## Dataset Creation ### Methodology TO DO ### Curation Rationale For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines. ### Source Data #### Initial Data Collection and Normalization TO DO #### Who are the source language producers? TO DO ### Annotations #### Annotation process TO DO #### Who are the annotators? TO DO ### Dataset Curators TO DO: Martin? ### Personal and Sensitive Information No personal or sensitive information included. ## Contact TO DO: Casimiro? ## License