Datasets:
Tasks:
Automatic Speech Recognition
Sub-tasks:
keyword-spotting
Size:
10K<n<100K
ArXiv:
Tags:
speech-recognition
License:
File size: 5,830 Bytes
0349b76 8a7e413 0349b76 a127531 0349b76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# coding=utf-8
# Copyright 2022 The PolyAI and HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import os
import datasets
logger = datasets.logging.get_logger(__name__)
""" MInDS-14 Dataset"""
_CITATION = """\
@article{gerz2021multilingual,
title={Multilingual and cross-lingual intent detection from spoken data},
author={Gerz, Daniela and Su, Pei-Hao and Kusztos, Razvan and Mondal, Avishek and Lis, Michal and Singhal, Eshan and Mrk{\v{s}}i{\'c}, Nikola and Wen, Tsung-Hsien and Vuli{\'c}, Ivan},
journal={arXiv preprint arXiv:2104.08524},
year={2021}
}
"""
_DESCRIPTION = """\
MINDS-14 is training and evaluation resource for intent
detection task with spoken data. It covers 14
intents extracted from a commercial system
in the e-banking domain, associated with spoken examples in 14 diverse language varieties.
"""
_ALL_CONFIGS = sorted([
"cs-CZ", "de-DE", "en-AU", "en-GB", "en-US", "es-ES", "fr-FR", "it-IT", "ko-KR", "nl-NL", "pl-PL", "pt-PT", "ru-RU", "zh-CN"
])
_DESCRIPTION = "MINDS-14 is a dataset for the intent detection task with spoken data. It covers 14 intents extracted from a commercial system in the e-banking domain, associated with spoken examples in 14 diverse language varieties."
_HOMEPAGE_URL = "https://arxiv.org/abs/2104.08524"
_DATA_URL = "data/MInDS-14.zip"
class Minds14Config(datasets.BuilderConfig):
"""BuilderConfig for xtreme-s"""
def __init__(
self, name, description, homepage, data_url
):
super(Minds14Config, self).__init__(
name=self.name,
version=datasets.Version("1.0.0", ""),
description=self.description,
)
self.name = name
self.description = description
self.homepage = homepage
self.data_url = data_url
def _build_config(name):
return Minds14Config(
name=name,
description=_DESCRIPTION,
homepage=_HOMEPAGE_URL,
data_url=_DATA_URL,
)
class Minds14(datasets.GeneratorBasedBuilder):
DEFAULT_WRITER_BATCH_SIZE = 1000
BUILDER_CONFIGS = [_build_config(name) for name in _ALL_CONFIGS + ["all"]]
def _info(self):
langs = _ALL_CONFIGS
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=8_000),
"transcription": datasets.Value("string"),
"english_transcription": datasets.Value("string"),
"intent_class": datasets.ClassLabel(
names=[
"abroad",
"address",
"app_error",
"atm_limit",
"balance",
"business_loan",
"card_issues",
"cash_deposit",
"direct_debit",
"freeze",
"high_value_payment",
"joint_account",
"latest_transactions",
"pay_bill",
]
),
"lang_id": datasets.ClassLabel(names=langs),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=("audio", "transcription"),
homepage=self.config.homepage,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
langs = (
_ALL_CONFIGS
if self.config.name == "all"
else [self.config.name]
)
archive_path = dl_manager.download_and_extract(self.config.data_url)
audio_path = dl_manager.extract(
os.path.join(archive_path, "MInDS-14", "audio.zip")
)
text_path = dl_manager.extract(
os.path.join(archive_path, "MInDS-14", "text.zip")
)
text_path = {l: os.path.join(text_path, f"{l}.csv") for l in langs}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"audio_path": audio_path,
"text_paths": text_path,
},
)
]
def _generate_examples(self, audio_path, text_paths):
key = 0
for lang in text_paths.keys():
text_path = text_paths[lang]
with open(text_path, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file, delimiter=",", skipinitialspace=True)
next(csv_reader)
for row in csv_reader:
file_path, transcription, english_transcription, intent_class = row
file_path = os.path.join(audio_path, *file_path.split("/"))
yield key, {
"path": file_path,
"audio": file_path,
"transcription": transcription,
"english_transcription": english_transcription,
"intent_class": intent_class.lower(),
"lang_id": _ALL_CONFIGS.index(lang),
}
key += 1
|