File size: 5,830 Bytes
0349b76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7e413
0349b76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a127531
0349b76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# coding=utf-8
# Copyright 2022 The PolyAI and HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import csv
import os

import datasets

logger = datasets.logging.get_logger(__name__)


""" MInDS-14 Dataset"""

_CITATION = """\
@article{gerz2021multilingual,
  title={Multilingual and cross-lingual intent detection from spoken data},
  author={Gerz, Daniela and Su, Pei-Hao and Kusztos, Razvan and Mondal, Avishek and Lis, Michal and Singhal, Eshan and Mrk{\v{s}}i{\'c}, Nikola and Wen, Tsung-Hsien and Vuli{\'c}, Ivan},
  journal={arXiv preprint arXiv:2104.08524},
  year={2021}
}
"""

_DESCRIPTION = """\
MINDS-14 is training and evaluation resource for intent
detection task with spoken data. It covers 14
intents extracted from a commercial system
in the e-banking domain, associated with spoken examples in 14 diverse language varieties.
"""

_ALL_CONFIGS = sorted([
    "cs-CZ", "de-DE", "en-AU", "en-GB", "en-US", "es-ES", "fr-FR", "it-IT", "ko-KR", "nl-NL", "pl-PL", "pt-PT", "ru-RU", "zh-CN"
])


_DESCRIPTION = "MINDS-14 is a dataset for the intent detection task with spoken data. It covers 14 intents extracted from a commercial system in the e-banking domain, associated with spoken examples in 14 diverse language varieties."

_HOMEPAGE_URL = "https://arxiv.org/abs/2104.08524"

_DATA_URL = "data/MInDS-14.zip"


class Minds14Config(datasets.BuilderConfig):
    """BuilderConfig for xtreme-s"""

    def __init__(
        self, name, description, homepage, data_url
    ):
        super(Minds14Config, self).__init__(
            name=self.name,
            version=datasets.Version("1.0.0", ""),
            description=self.description,
        )
        self.name = name
        self.description = description
        self.homepage = homepage
        self.data_url = data_url


def _build_config(name):
    return Minds14Config(
        name=name,
        description=_DESCRIPTION,
        homepage=_HOMEPAGE_URL,
        data_url=_DATA_URL,
    )


class Minds14(datasets.GeneratorBasedBuilder):

    DEFAULT_WRITER_BATCH_SIZE = 1000
    BUILDER_CONFIGS = [_build_config(name) for name in _ALL_CONFIGS + ["all"]]

    def _info(self):
        langs = _ALL_CONFIGS
        features = datasets.Features(
            {
                "path": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=8_000),
                "transcription": datasets.Value("string"),
                "english_transcription": datasets.Value("string"),
                "intent_class": datasets.ClassLabel(
                    names=[
                        "abroad",
                        "address",
                        "app_error",
                        "atm_limit",
                        "balance",
                        "business_loan",
                        "card_issues",
                        "cash_deposit",
                        "direct_debit",
                        "freeze",
                        "high_value_payment",
                        "joint_account",
                        "latest_transactions",
                        "pay_bill",
                    ]
                ),
                "lang_id": datasets.ClassLabel(names=langs),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=("audio", "transcription"),
            homepage=self.config.homepage,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        langs = (
            _ALL_CONFIGS
            if self.config.name == "all"
            else [self.config.name]
        )

        archive_path = dl_manager.download_and_extract(self.config.data_url)
        audio_path = dl_manager.extract(
            os.path.join(archive_path, "MInDS-14", "audio.zip")
        )
        text_path = dl_manager.extract(
            os.path.join(archive_path, "MInDS-14", "text.zip")
        )

        text_path = {l: os.path.join(text_path, f"{l}.csv") for l in langs}

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "audio_path": audio_path,
                    "text_paths": text_path,
                },
            )
        ]


    def _generate_examples(self, audio_path, text_paths):
        key = 0
        for lang in text_paths.keys():
            text_path = text_paths[lang]
            with open(text_path, encoding="utf-8") as csv_file:
                csv_reader = csv.reader(csv_file, delimiter=",", skipinitialspace=True)
                next(csv_reader)
                for row in csv_reader:
                    file_path, transcription, english_transcription, intent_class = row

                    file_path = os.path.join(audio_path, *file_path.split("/"))
                    yield key, {
                        "path": file_path,
                        "audio": file_path,
                        "transcription": transcription,
                        "english_transcription": english_transcription,
                        "intent_class": intent_class.lower(),
                        "lang_id": _ALL_CONFIGS.index(lang),
                    }
                    key += 1