Datasets:
Tasks:
Automatic Speech Recognition
Sub-tasks:
keyword-spotting
Size:
10K<n<100K
ArXiv:
Tags:
speech-recognition
License:
# coding=utf-8 | |
# Copyright 2022 The PolyAI and HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import csv | |
import os | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
""" MInDS-14 Dataset""" | |
_CITATION = """\ | |
@article{gerz2021multilingual, | |
title={Multilingual and cross-lingual intent detection from spoken data}, | |
author={Gerz, Daniela and Su, Pei-Hao and Kusztos, Razvan and Mondal, Avishek and Lis, Michal and Singhal, Eshan and Mrk{\v{s}}i{\'c}, Nikola and Wen, Tsung-Hsien and Vuli{\'c}, Ivan}, | |
journal={arXiv preprint arXiv:2104.08524}, | |
year={2021} | |
} | |
""" | |
_DESCRIPTION = """\ | |
MINDS-14 is training and evaluation resource for intent | |
detection task with spoken data. It covers 14 | |
intents extracted from a commercial system | |
in the e-banking domain, associated with spoken examples in 14 diverse language varieties. | |
""" | |
_ALL_CONFIGS = sorted([ | |
"cs-CZ", "de-DE", "en-AU", "en-GB", "en-US", "es-ES", "fr-FR", "it-IT", "ko-KR", "nl-NL", "pl-PL", "pt-PT", "ru-RU", "zh-CN" | |
]) | |
_DESCRIPTION = "MINDS-14 is a dataset for the intent detection task with spoken data. It covers 14 intents extracted from a commercial system in the e-banking domain, associated with spoken examples in 14 diverse language varieties." | |
_HOMEPAGE_URL = "https://arxiv.org/abs/2104.08524" | |
_DATA_URL = "data/MInDS-14.zip" | |
class Minds14Config(datasets.BuilderConfig): | |
"""BuilderConfig for xtreme-s""" | |
def __init__( | |
self, name, description, homepage, data_url | |
): | |
super(Minds14Config, self).__init__( | |
name=self.name, | |
version=datasets.Version("1.0.0", ""), | |
description=self.description, | |
) | |
self.name = name | |
self.description = description | |
self.homepage = homepage | |
self.data_url = data_url | |
def _build_config(name): | |
return Minds14Config( | |
name=name, | |
description=_DESCRIPTION, | |
homepage=_HOMEPAGE_URL, | |
data_url=_DATA_URL, | |
) | |
class Minds14(datasets.GeneratorBasedBuilder): | |
DEFAULT_WRITER_BATCH_SIZE = 1000 | |
BUILDER_CONFIGS = [_build_config(name) for name in _ALL_CONFIGS + ["all"]] | |
def _info(self): | |
task_templates = None | |
langs = _ALL_CONFIGS | |
features = datasets.Features( | |
{ | |
"path": datasets.Value("string"), | |
"audio": datasets.Audio(sampling_rate=8_000), | |
"transcription": datasets.Value("string"), | |
"english_transcription": datasets.Value("string"), | |
"intent_class": datasets.ClassLabel( | |
names=[ | |
"abroad", | |
"address", | |
"app_error", | |
"atm_limit", | |
"balance", | |
"business_loan", | |
"card_issues", | |
"cash_deposit", | |
"direct_debit", | |
"freeze", | |
"high_value_payment", | |
"joint_account", | |
"latest_transactions", | |
"pay_bill", | |
] | |
), | |
"lang_id": datasets.ClassLabel(names=langs), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=("audio", "transcription"), | |
homepage=self.config.homepage, | |
citation=_CITATION, | |
task_templates=task_templates, | |
) | |
def _split_generators(self, dl_manager): | |
langs = ( | |
_ALL_CONFIGS | |
if self.config.name == "all" | |
else [self.config.name] | |
) | |
archive_path = dl_manager.download_and_extract(self.config.data_url) | |
audio_path = dl_manager.extract( | |
os.path.join(archive_path, "MInDS-14", "audio.zip") | |
) | |
text_path = dl_manager.extract( | |
os.path.join(archive_path, "MInDS-14", "text.zip") | |
) | |
text_path = {l: os.path.join(text_path, f"{l}.csv") for l in langs} | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"audio_path": audio_path, | |
"text_paths": text_path, | |
}, | |
) | |
] | |
def _generate_examples(self, audio_path, text_paths): | |
key = 0 | |
for lang in text_paths.keys(): | |
text_path = text_paths[lang] | |
with open(text_path, encoding="utf-8") as csv_file: | |
csv_reader = csv.reader(csv_file, delimiter=",", skipinitialspace=True) | |
next(csv_reader) | |
for row in csv_reader: | |
file_path, transcription, english_transcription, intent_class = row | |
file_path = os.path.join(audio_path, *file_path.split("/")) | |
yield key, { | |
"path": file_path, | |
"audio": file_path, | |
"transcription": transcription, | |
"english_transcription": english_transcription, | |
"intent_class": intent_class.lower(), | |
"lang_id": _ALL_CONFIGS.index(lang), | |
} | |
key += 1 | |