File size: 13,445 Bytes
9654d7a 177e39c 9654d7a ab17375 9654d7a ab17375 9654d7a 489486f 13203c7 0efeb82 177e39c 56bb6b0 177e39c 9654d7a 066793c 9f10971 9654d7a d31329c 9fbbd6e 9654d7a 8b72fdf 066793c 9f10971 9654d7a 7a8567a 9654d7a ab17375 9654d7a b69f9a8 9654d7a 56bb6b0 2fa0ad0 3aa13cd 9654d7a a1468ba 9654d7a ab17375 8bc3012 9654d7a 8ba22de 9654d7a ab17375 ff38499 ab17375 d633cf8 2800183 d633cf8 2800183 ab17375 af5cbcc f060065 377b59c 1be08e5 fecae0a 8424c41 1265dc9 9654d7a 8199fea 0f0173e ad951e6 0f0173e 6f7b13c 0f0173e 9654d7a c5ccd26 9654d7a 369705f 1be08e5 9fbbd6e 6541e65 1be08e5 336870f cc849bc a73a1b6 c47fe1f cc849bc 56bb6b0 1be08e5 56bb6b0 1be08e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and Arjun Barrett.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""VoxCeleb audio-visual human speech dataset."""
import json
import os
from io import BytesIO
from getpass import getpass
from hashlib import sha256
from itertools import repeat
from multiprocessing import Manager, Pool, Process
from pathlib import Path
from shutil import copyfileobj
import pandas as pd
import requests
import datasets
import urllib3
import zipfile
import traceback
import fsspec as fs
import librosa
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
_CITATION = """\
@Article{Nagrani19,
author = "Arsha Nagrani and Joon~Son Chung and Weidi Xie and Andrew Zisserman",
title = "Voxceleb: Large-scale speaker verification in the wild",
journal = "Computer Science and Language",
year = "2019",
publisher = "Elsevier",
}
@InProceedings{Chung18b,
author = "Chung, J.~S. and Nagrani, A. and Zisserman, A.",
title = "VoxCeleb2: Deep Speaker Recognition",
booktitle = "INTERSPEECH",
year = "2018",
}
@InProceedings{Nagrani17,
author = "Nagrani, A. and Chung, J.~S. and Zisserman, A.",
title = "VoxCeleb: a large-scale speaker identification dataset",
booktitle = "INTERSPEECH",
year = "2017",
}
"""
_DESCRIPTION = """\
VoxCeleb is an audio-visual dataset consisting of short clips of human speech, extracted from interview videos uploaded to YouTube
"""
_URL = "https://mm.kaist.ac.kr/datasets/voxceleb"
_URLS = {
"video": {
"dev": {
1:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_mp4_1.zip",
2:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_mp4_2.zip",
3:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_mp4_3.zip",
4:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_mp4_4.zip",
5:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_mp4_5.zip",
6:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_mp4_6.zip",
},
"test": {1:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_test_mp4.zip"}
},
"audio1": {
"dev": {1:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_dev_wav.zip"},
"test": {1:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_test_wav.zip"}
},
"audio2": {
"dev":
{1:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_aac_1.zip",2:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_aac_2.zip"},
"test": {1:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_test_aac.zip"},
},
}
_DATASET_IDS = {"video": "vox2", "audio1": "vox1", "audio2": "vox2"}
# _PLACEHOLDER_MAPS = dict(
# value
# for urls in _URLS.values()
# for value in ((urls["dev"], urls["dev"]), (urls["test"], (urls["test"],)))
# )
def _mp_download(
url,
tmp_path,
resume_pos,
length,
queue,
):
if length == resume_pos:
return
with open(tmp_path, "ab" if resume_pos else "wb") as tmp:
headers = {}
if resume_pos != 0:
headers["Range"] = f"bytes={resume_pos}-"
response = requests.get(
url, headers=headers, stream=True
)
if response.status_code >= 200 and response.status_code < 300:
for chunk in response.iter_content(chunk_size=65536):
queue.put(len(chunk))
tmp.write(chunk)
else:
raise ConnectionError("failed to fetch dataset")
class VoxCeleb(datasets.GeneratorBasedBuilder):
"""VoxCeleb is an unlabled dataset consisting of short clips of human speech from interviews on YouTube"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="video", version=VERSION, description="Video clips of human speech"
),
datasets.BuilderConfig(
name="audio", version=VERSION, description="Audio clips of human speech"
),
datasets.BuilderConfig(
name="audio1",
version=datasets.Version("1.0.0"),
description="Audio clips of human speech from VoxCeleb1",
),
datasets.BuilderConfig(
name="audio2",
version=datasets.Version("2.0.0"),
description="Audio clips of human speech from VoxCeleb2",
),
]
def _info(self):
features = {
"file": datasets.Value("string"),
"file_format": datasets.Value("string"),
"dataset_id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"speaker_gender": datasets.Value("string"),
"video_id": datasets.Value("string"),
"clip_index": datasets.Value("int32"),
}
if self.config.name.startswith("audio"):
features["speaker_name"] = datasets.Value("string")
features["speaker_nationality"] = datasets.Value("string")
features["audio"] = datasets.Audio(mono=False)
if self.config.name.startswith("video"):
features["video"] = datasets.Value("large_binary")
return datasets.DatasetInfo(
description=_DESCRIPTION,
homepage=_URL,
supervised_keys=datasets.info.SupervisedKeysData("file", "speaker_id"),
features=datasets.Features(features),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# if dl_manager.is_streaming:
# raise TypeError("Streaming is not supported for VoxCeleb")
targets = (
["audio1", "audio2"] if self.config.name == "audio" else [self.config.name]
)
def download_custom(placeholder_url, path):
nonlocal dl_manager
sources = _PLACEHOLDER_MAPS[placeholder_url]
tmp_paths = []
lengths = []
start_positions = []
for url in sources:
head = requests.head(url,timeout=5,stream=True,allow_redirects=True,verify=False)
if head.status_code == 401:
raise ValueError("failed to authenticate with VoxCeleb host")
if head.status_code < 200 or head.status_code >= 300:
raise ValueError("failed to fetch dataset")
content_length = head.headers.get("Content-Length")
if content_length is None:
raise ValueError("expected non-empty Content-Length")
content_length = int(content_length)
tmp_path = Path(path + "." + sha256(url.encode("utf-8")).hexdigest())
tmp_paths.append(tmp_path)
lengths.append(content_length)
start_positions.append(
tmp_path.stat().st_size
if tmp_path.exists() and dl_manager.download_config.resume_download
else 0
)
def progress(q, cur, total):
with datasets.utils.logging.tqdm(
unit="B",
unit_scale=True,
total=total,
initial=cur,
desc="Downloading",
disable=not datasets.utils.logging.is_progress_bar_enabled(),
) as progress:
while cur < total:
try:
added = q.get(timeout=1)
progress.update(added)
cur += added
except:
continue
manager = Manager()
q = manager.Queue()
with Pool(len(sources)) as pool:
proc = Process(
target=progress,
args=(q, sum(start_positions), sum(lengths)),
daemon=True,
)
proc.start()
pool.starmap(
_mp_download,
zip(
sources,
tmp_paths,
start_positions,
lengths,
repeat(q),
),
)
pool.close()
proc.join()
with open(path, "wb") as out:
for tmp_path in tmp_paths:
with open(tmp_path, "rb") as tmp:
copyfileobj(tmp, out)
tmp_path.unlink()
metadata = dl_manager.download(
dict(
(
target,
f"https://mm.kaist.ac.kr/datasets/voxceleb/meta/{_DATASET_IDS[target]}_meta.csv",
)
for target in targets
)
)
mapped_paths = dl_manager.download_and_extract(
dict(
(
placeholder_key,
dict(
(target, _URLS[target][placeholder_key])
for target in targets
),
)
for placeholder_key in ("dev", "test")
))
apply_function_recursive = lambda d, f: {k: apply_function_recursive(v, f) if isinstance(v, dict) else f(v) for k, v in d.items()}
mapped_paths = apply_function_recursive(mapped_paths, dl_manager.iter_files)
return [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"paths":mapped_paths["dev"],
"meta_paths": metadata,
},
),
datasets.SplitGenerator(
name="test",
gen_kwargs={
"paths": mapped_paths["test"],
"meta_paths": metadata,
},
),
]
def _generate_examples(self, paths, meta_paths):
key = 0
for conf in paths:
dataset_id = "vox1" if conf == "audio1" else "vox2"
meta = pd.read_csv(
meta_paths[conf],
sep="\t" if conf == "audio1" else " ,",
index_col=0,
engine="python",
)
for path in paths[conf].values():
for file in path:
# subdirs = [x[0] for x in os.walk(path)]
# raise Exception(subdirs)
#raise Exception(file)
#raise Exception(os.is_symlink(path))
#raise Exception(os.listdir(path))
try:
t = tuple(file.split("::")[0].split("/")[2:])
_,dataset_format,speaker,video_id,clip_index= (None,) * (5 - len(t)) + t
except Exception:
raise Exception(file.split("::")[0].split("/")[2:])
speaker_info = meta.loc[speaker]
clip_index = int(Path(clip_index).stem)
info = {
"file": file,
"file_format": dataset_format,
"dataset_id": dataset_id,
"speaker_id": speaker,
"speaker_gender": speaker_info["Gender"],
"video_id": video_id,
"clip_index": clip_index,
}
if dataset_id == "vox1":
info["speaker_name"] = speaker_info["VGGFace1 ID"]
info["speaker_nationality"] = speaker_info["Nationality"]
if conf.startswith("audio"):
if dataset_format == "aac":
with fs.open(info["file"], 'rb') as f:
z = BytesIO(f.read())
Path('./temp.m4a').write_bytes(z.getbuffer())
y, sr = librosa.load('./temp.m4a')
#y, sr = librosa.load(f)
info["audio"] = {'array':y,'path':info["file"],'sampling_rate':sr}
else:
info["audio"] = info["file"]
if conf.startswith("video"):
with fs.open(info["file"], 'rb') as f:
info["video"] = BytesIO(f.read()).getvalue()
yield key, info
key += 1 |