File size: 2,380 Bytes
39b54fa 21cdc76 b688b59 c2f6280 c951bb3 25e5213 c2b0e52 3094c50 a2fcaaf 39b54fa c2f6280 39b54fa 21cdc76 b688b59 c2f6280 c951bb3 25e5213 c2b0e52 3094c50 a2fcaaf 39b54fa 93e50bc 0c44556 93e50bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
configs:
- config_name: mcd1
data_files:
- split: train
path: mcd1/train-*
- split: dev
path: mcd1/dev-*
- split: test
path: mcd1/test-*
- config_name: mcd2
data_files:
- split: train
path: mcd2/train-*
- split: dev
path: mcd2/dev-*
- split: test
path: mcd2/test-*
- config_name: mcd3
data_files:
- split: train
path: mcd3/train-*
- split: dev
path: mcd3/dev-*
- split: test
path: mcd3/test-*
dataset_info:
- config_name: mcd1
features:
- name: commands
dtype: string
- name: actions
dtype: string
splits:
- name: train
num_bytes: 1435200
num_examples: 8365
- name: dev
num_bytes: 242915
num_examples: 1046
- name: test
num_bytes: 249212
num_examples: 1045
download_size: 340627
dataset_size: 1927327
- config_name: mcd2
features:
- name: commands
dtype: string
- name: actions
dtype: string
splits:
- name: train
num_bytes: 1408018
num_examples: 8365
- name: dev
num_bytes: 229805
num_examples: 1046
- name: test
num_bytes: 230998
num_examples: 1045
download_size: 336499
dataset_size: 1868821
- config_name: mcd3
features:
- name: commands
dtype: string
- name: actions
dtype: string
splits:
- name: train
num_bytes: 1419109
num_examples: 8365
- name: dev
num_bytes: 252766
num_examples: 1046
- name: test
num_bytes: 247900
num_examples: 1045
download_size: 340622
dataset_size: 1919775
---
# Dataset Card for "SCAN_MCDSplits"
This is the dataset repository for SCAN MCD splits. In total, there are three splits - mcd1, mcd2, and mcd3
SCAN is a set of simple language-driven navigation tasks for studying compositional learning and zero-shot generalization. The SCAN tasks were inspired by the CommAI environment, which is the origin of the acronym (Simplified versions of the CommAI Navigation tasks).
The relevant SCAN paper is:
[Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks](https://arxiv.org/pdf/1711.00350). ICML 2018.
The relevant MCD split paper is:
[Measuring Compositional Generalization: A Comprehensive Method on Realistic Data](https://arxiv.org/pdf/1912.09713). ICLR 2020.
You can load them by:
```datasets.load_dataset("Punchwe/SCAN_MCDSplits", name="mcd1", split="train")```
|