Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
File size: 2,380 Bytes
39b54fa
 
 
 
 
 
21cdc76
 
b688b59
 
c2f6280
 
 
 
c951bb3
 
25e5213
 
c2b0e52
 
 
 
3094c50
 
a2fcaaf
 
39b54fa
c2f6280
39b54fa
 
 
 
 
 
 
 
 
21cdc76
 
 
b688b59
 
 
 
 
c2f6280
 
 
 
 
 
 
 
 
 
c951bb3
 
 
25e5213
 
 
 
 
c2b0e52
 
 
 
 
 
 
 
 
 
3094c50
 
 
a2fcaaf
 
 
 
 
39b54fa
 
 
93e50bc
 
0c44556
 
 
 
 
 
 
 
 
 
 
93e50bc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
configs:
- config_name: mcd1
  data_files:
  - split: train
    path: mcd1/train-*
  - split: dev
    path: mcd1/dev-*
  - split: test
    path: mcd1/test-*
- config_name: mcd2
  data_files:
  - split: train
    path: mcd2/train-*
  - split: dev
    path: mcd2/dev-*
  - split: test
    path: mcd2/test-*
- config_name: mcd3
  data_files:
  - split: train
    path: mcd3/train-*
  - split: dev
    path: mcd3/dev-*
  - split: test
    path: mcd3/test-*
dataset_info:
- config_name: mcd1
  features:
  - name: commands
    dtype: string
  - name: actions
    dtype: string
  splits:
  - name: train
    num_bytes: 1435200
    num_examples: 8365
  - name: dev
    num_bytes: 242915
    num_examples: 1046
  - name: test
    num_bytes: 249212
    num_examples: 1045
  download_size: 340627
  dataset_size: 1927327
- config_name: mcd2
  features:
  - name: commands
    dtype: string
  - name: actions
    dtype: string
  splits:
  - name: train
    num_bytes: 1408018
    num_examples: 8365
  - name: dev
    num_bytes: 229805
    num_examples: 1046
  - name: test
    num_bytes: 230998
    num_examples: 1045
  download_size: 336499
  dataset_size: 1868821
- config_name: mcd3
  features:
  - name: commands
    dtype: string
  - name: actions
    dtype: string
  splits:
  - name: train
    num_bytes: 1419109
    num_examples: 8365
  - name: dev
    num_bytes: 252766
    num_examples: 1046
  - name: test
    num_bytes: 247900
    num_examples: 1045
  download_size: 340622
  dataset_size: 1919775
---
# Dataset Card for "SCAN_MCDSplits"

This is the dataset repository for SCAN MCD splits. In total, there are three splits - mcd1, mcd2, and mcd3

SCAN is a set of simple language-driven navigation tasks for studying compositional learning and zero-shot generalization. The SCAN tasks were inspired by the CommAI environment, which is the origin of the acronym (Simplified versions of the CommAI Navigation tasks).

The relevant SCAN paper is: 

[Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks](https://arxiv.org/pdf/1711.00350). ICML 2018.

The relevant MCD split paper is: 

[Measuring Compositional Generalization: A Comprehensive Method on Realistic Data](https://arxiv.org/pdf/1912.09713). ICLR 2020.


You can load them by:
```datasets.load_dataset("Punchwe/SCAN_MCDSplits", name="mcd1", split="train")```