Datasets:
QCRI
/

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 10,408 Bytes
e6add61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bea4e99
 
 
 
 
 
 
e6add61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0561921
e6add61
 
 
 
 
5b484df
 
 
 
 
 
 
 
 
 
 
 
 
 
e6add61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
---
license: cc-by-nc-sa-4.0
task_categories:
  - question-answering
language:
  - ar
  - asm
  - bn
  - en
  - hi
  - ne
  - tr
tags:
  - question-answering
  - cultural-aligned
pretty_name: 'MultiNativQA -- Multilingual Native and Culturally Aligned QA'
size_categories:
  - 10K<n<100K
dataset_info:
  - config_name: Arabic
    splits:
      - name: train
        num_examples: 3649
      - name: dev
        num_examples: 492
      - name: test
        num_examples: 988
  - config_name: Assamese
    splits:
      - name: train
        num_examples: 1131
      - name: dev
        num_examples: 157
      - name: test
        num_examples: 545
  - config_name: Bangla-BD
    splits:
      - name: train
        num_examples: 7018
      - name: dev
        num_examples: 953
      - name: test
        num_examples: 1521
  - config_name: Bangla-IN
    splits:
      - name: train
        num_examples: 6891
      - name: dev
        num_examples: 930
      - name: test
        num_examples: 2146
  - config_name: English-BD
    splits:
      - name: train
        num_examples: 4761
      - name: dev
        num_examples: 656
      - name: test
        num_examples: 1113
  - config_name: English-QA
    splits:
      - name: train
        num_examples: 8212
      - name: dev
        num_examples: 1164
      - name: test
        num_examples: 2322
  - config_name: Hindi
    splits:  
      - name: train
        num_examples: 9288
      - name: dev
        num_examples: 1286
      - name: test
        num_examples: 2745
  - config_name: Nepali
    splits:
      - name: test
        num_examples: 561
  - config_name: Turkish
    splits:
      - name: train
        num_examples: 3527
      - name: dev
        num_examples: 483
      - name: test
        num_examples:  1218
configs:
  - config_name: arabic_qa
    data_files:
      - split: train
        path: arabic_qa/NativQA_ar_msa_qa_train.json
      - split: dev
        path: arabic_qa/NativQA_ar_msa_qa_dev.json
      - split: test
        path: arabic_qa/NativQA_ar_msa_qa_test.json
  - config_name: assamese_in
    data_files:
      - split: train
        path: assamese_in/NativQA_asm_NA_in_train.json
      - split: dev
        path: assamese_in/NativQA_asm_NA_in_dev.json
      - split: test
        path: assamese_in/NativQA_asm_NA_in_test.json
  - config_name: bangla_bd
    data_files:
      - split: train
        path: bangla_bd/NativQA_bn_scb_bd_train.json
      - split: dev
        path: bangla_bd/NativQA_bn_scb_bd_dev.json
      - split: test
        path: bangla_bd/NativQA_bn_scb_bd_test.json
  - config_name: bangla_in
    data_files:
      - split: train
        path: bangla_in/NativQA_bn_scb_in_train.json
      - split: dev
        path: bangla_in/NativQA_bn_scb_in_dev.json
      - split: test
        path: bangla_in/NativQA_bn_scb_in_test.json
  - config_name: english_bd
    data_files:
      - split: train
        path: english_bd/NativQA_en_NA_bd_train.json
      - split: dev
        path: english_bd/NativQA_en_NA_bd_dev.json
      - split: test
        path: english_bd/NativQA_en_NA_bd_test.json
  - config_name: english_qa
    data_files:
      - split: train
        path: english_qa/NativQA_en_NA_qa_train.json
      - split: dev
        path: english_qa/NativQA_en_NA_qa_dev.json
      - split: test
        path: english_qa/NativQA_en_NA_qa_test.json
  - config_name: hindi_in
    data_files:
      - split: train
        path: hindi_in/NativQA_hi_NA_in_train.json
      - split: dev
        path: hindi_in/NativQA_hi_NA_in_dev.json
      - split: test
        path: hindi_in/NativQA_hi_NA_in_test.json
  - config_name: nepali_np
    data_files:
      - split: test
        path: nepali_np/NativQA_ne_NA_np_test.json
  - config_name: turkish_tr
    data_files:
      - split: train
        path: turkish_tr/NativQA_tr_NA_tr_train.json
      - split: dev
        path: turkish_tr/NativQA_tr_NA_tr_dev.json
      - split: test
        path: turkish_tr/NativQA_tr_NA_tr_test.json
---

# MultiNativQA: Multilingual Culturally-Aligned Natural Queries For LLMs

### Overview
The **MultiNativQA** dataset is a multilingual, native, and culturally aligned question-answering resource. It spans 7 languages, ranging from high- to extremely low-resource, and covers 9 different locations/cities. To capture linguistic diversity, the dataset includes several dialects for dialect-rich languages like Arabic. In addition to Modern Standard Arabic (MSA), **MultiNativQA** features six Arabic dialects — *Egyptian, Jordanian, Khaliji, Sudanese, Tunisian*, and *Yemeni*.

The dataset also provides two linguistic variations of Bangla, reflecting differences between speakers in *Bangladesh* and *West Bengal, India*. Additionally, **MultiNativQA** includes English queries from *Dhaka* and *Doha*, where English is commonly used as a second language, as well as from *New York, USA*.

The QA pairs in this dataset cover 18 diverse topics, including: *Animals, Business, Clothing, Education, Events, Food & Drinks, General, Geography, Immigration, Language, Literature, Names & Persons, Plants, Religion, Sports & Games, Tradition, Travel*, and *Weather*.

**MultiNativQA** is designed to evaluate and fine-tune large language models (LLMs) for long-form question answering while assessing their cultural adaptability and understanding.

### Directory Structure (JSON files only)
The dataset is organized into directories based on language and region. Each directory contains JSON files for the train, development, and test sets, with the exception of Nepali, which consists of only a test set.

- `arabic_qa/`
    - `NativQA_ar_msa_qa_dev.json`
    - `NativQA_ar_msa_qa_test.json`
    - `NativQA_ar_msa_qa_train.json`
- `assamese_in/`
    - `NativQA_asm_NA_in_dev.json`
    - `NativQA_asm_NA_in_test.json`
    - `NativQA_asm_NA_in_train.json`
- `bangla_bd/`
    - `NativQA_bn_scb_bd_dev.json`
    - `NativQA_bn_scb_bd_test.json`
    - `NativQA_bn_scb_bd_train.json`
- `bangla_in/`
    - `NativQA_bn_scb_in_dev.json`
    - `NativQA_bn_scb_in_test.json`
    - `NativQA_bn_scb_in_train.json`
- `english_bd/`
    - `NativQA_en_NA_bd_dev.json`
    - `NativQA_en_NA_bd_test.json`
    - `NativQA_en_NA_bd_train.json`
- `english_qa/`
    - `NativQA_en_NA_qa_dev.json`
    - `NativQA_en_NA_qa_test.json`
    - `NativQA_en_NA_qa_train.json`
- `hindi_in/`
    - `NativQA_hi_NA_in_dev.json`
    - `NativQA_hi_NA_in_test.json`
    - `NativQA_hi_NA_in_train.json`
- `nepali_np/`
    - `NativQA_ne_NA_np_test.json`
- `turkish_tr/`
    - `NativQA_tr_NA_tr_dev.json`
    - `NativQA_tr_NA_tr_test.json`
    - `NativQA_tr_NA_tr_train.json`


#### Example of a data
```
{
    "data_id": "cf92ec1e52b4b3071d263a1063b43928",
    "category": "immigration",
    "input_query": "How long can you stay in Qatar on a visitors visa?",
    "question": "Can I extend my tourist visa in Qatar?",
    "is_reliable": "very_reliable",
    "answer": "If you would like to extend your visa, you will need to proceed to immigration headquarters in Doha prior to the expiry of your visa and apply there for an extension.",
    "source_answer_url": "https://hayya.qa/en/web/hayya/faq"
}
```
##### Field Descriptions:
- **`data_id`**: Unique identifier for each data entry.
- **`category`**: General topic or category of the query (e.g., "health", "religion").
- **`input_query`**: The original user-submitted query.
- **`question`**: The formalized question derived from the input query.
- **`is_reliable`**: Indicates the reliability of the provided answer (`"very_reliable"`, `"somewhat_reliable"`, `"unreliable"`).
- **`answer`**: The system-provided answer to the query.
- **`source_answer_url`**: URL of the source from which the answer was derived.


### Statistics
Distribution of the **MultiNativQA** dataset across different languages.
<p align="left"> <img src="./language_donut_chart.png" style="width: 60%;" id="title-icon"> </p>

This dataset consists of two types of data: annotated and un-annotated. We considered the un-annotated data as additional data. Please find the data statistics below:

Statistics of our **MultiNativQA** dataset including languages with the final annotated QA pairs from different location.

| Language    | City       | Train   | Dev   | Test   | Total  |
|-------------|------------|---------|-------|--------|--------|
| Arabic      | Doha       | 3,649   | 492   | 988    | 5,129  |
| Assamese    | Assam      | 1,131   | 157   | 545    | 1,833  |
| Bangla      | Dhaka      | 7,018   | 953   | 1,521  | 9,492  |
| Bangla      | Kolkata    | 6,891   | 930   | 2,146  | 9,967  |
| English     | Dhaka      | 4,761   | 656   | 1,113  | 6,530  |
| English     | Doha       | 8,212   | 1,164 | 2,322  | 11,698 |
| Hindi       | Delhi      | 9,288   | 1,286 | 2,745  | 13,319 |
| Nepali      | Kathmandu  | --      | --    | 561    | 561    |
| Turkish     | Istanbul   | 3,527   | 483   | 1,218  | 5,228  |
| **Total**   |            | **44,477** | **6,121** | **13,159** | **63,757** |



We provide the un-annotated additional data stats below:

| Language-Location 	     | # of QA 	     |
|-------------------------|---------------|
| Arabic-Egypt      	     | 7,956   	     |
| Arabic-Palestine  	     | 5,679   	     |
| Arabic-Sudan      	     | 4,718   	     |
| Arabic-Syria      	     | 11,288  	     |
| Arabic-Tunisia    	     | 14,789  	     |
| Arabic-Yemen      	     | 4,818   	     |
| English-New York  	     | 6,454   	     |
| **Total**             	 | **55,702**  	 |

### License
The dataset is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0). The full license text can be found in the accompanying licenses_by-nc-sa_4.0_legalcode.txt file.

### Contact & Additional Information
For more details, please visit our [official website](http://nativqa.gitlab.io/).

### Citation
You can access the full paper [here](https://arxiv.org/pdf/2407.09823).

```
@article{hasan2024nativqa,
      title={NativQA: Multilingual Culturally-Aligned Natural Query for LLMs},
      author={Hasan, Md Arid and Hasanain, Maram and Ahmad, Fatema and Laskar, Sahinur Rahman and Upadhyay, Sunaya and Sukhadia, Vrunda N and Kutlu, Mucahid and Chowdhury, Shammur Absar and Alam, Firoj},
      journal={arXiv preprint arXiv:2407.09823},
      year={2024}
      publisher={arXiv:2407.09823},
      url={https://arxiv.org/abs/2407.09823},
}
```