Datasets:
File size: 10,408 Bytes
e6add61 bea4e99 e6add61 0561921 e6add61 5b484df e6add61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
---
license: cc-by-nc-sa-4.0
task_categories:
- question-answering
language:
- ar
- asm
- bn
- en
- hi
- ne
- tr
tags:
- question-answering
- cultural-aligned
pretty_name: 'MultiNativQA -- Multilingual Native and Culturally Aligned QA'
size_categories:
- 10K<n<100K
dataset_info:
- config_name: Arabic
splits:
- name: train
num_examples: 3649
- name: dev
num_examples: 492
- name: test
num_examples: 988
- config_name: Assamese
splits:
- name: train
num_examples: 1131
- name: dev
num_examples: 157
- name: test
num_examples: 545
- config_name: Bangla-BD
splits:
- name: train
num_examples: 7018
- name: dev
num_examples: 953
- name: test
num_examples: 1521
- config_name: Bangla-IN
splits:
- name: train
num_examples: 6891
- name: dev
num_examples: 930
- name: test
num_examples: 2146
- config_name: English-BD
splits:
- name: train
num_examples: 4761
- name: dev
num_examples: 656
- name: test
num_examples: 1113
- config_name: English-QA
splits:
- name: train
num_examples: 8212
- name: dev
num_examples: 1164
- name: test
num_examples: 2322
- config_name: Hindi
splits:
- name: train
num_examples: 9288
- name: dev
num_examples: 1286
- name: test
num_examples: 2745
- config_name: Nepali
splits:
- name: test
num_examples: 561
- config_name: Turkish
splits:
- name: train
num_examples: 3527
- name: dev
num_examples: 483
- name: test
num_examples: 1218
configs:
- config_name: arabic_qa
data_files:
- split: train
path: arabic_qa/NativQA_ar_msa_qa_train.json
- split: dev
path: arabic_qa/NativQA_ar_msa_qa_dev.json
- split: test
path: arabic_qa/NativQA_ar_msa_qa_test.json
- config_name: assamese_in
data_files:
- split: train
path: assamese_in/NativQA_asm_NA_in_train.json
- split: dev
path: assamese_in/NativQA_asm_NA_in_dev.json
- split: test
path: assamese_in/NativQA_asm_NA_in_test.json
- config_name: bangla_bd
data_files:
- split: train
path: bangla_bd/NativQA_bn_scb_bd_train.json
- split: dev
path: bangla_bd/NativQA_bn_scb_bd_dev.json
- split: test
path: bangla_bd/NativQA_bn_scb_bd_test.json
- config_name: bangla_in
data_files:
- split: train
path: bangla_in/NativQA_bn_scb_in_train.json
- split: dev
path: bangla_in/NativQA_bn_scb_in_dev.json
- split: test
path: bangla_in/NativQA_bn_scb_in_test.json
- config_name: english_bd
data_files:
- split: train
path: english_bd/NativQA_en_NA_bd_train.json
- split: dev
path: english_bd/NativQA_en_NA_bd_dev.json
- split: test
path: english_bd/NativQA_en_NA_bd_test.json
- config_name: english_qa
data_files:
- split: train
path: english_qa/NativQA_en_NA_qa_train.json
- split: dev
path: english_qa/NativQA_en_NA_qa_dev.json
- split: test
path: english_qa/NativQA_en_NA_qa_test.json
- config_name: hindi_in
data_files:
- split: train
path: hindi_in/NativQA_hi_NA_in_train.json
- split: dev
path: hindi_in/NativQA_hi_NA_in_dev.json
- split: test
path: hindi_in/NativQA_hi_NA_in_test.json
- config_name: nepali_np
data_files:
- split: test
path: nepali_np/NativQA_ne_NA_np_test.json
- config_name: turkish_tr
data_files:
- split: train
path: turkish_tr/NativQA_tr_NA_tr_train.json
- split: dev
path: turkish_tr/NativQA_tr_NA_tr_dev.json
- split: test
path: turkish_tr/NativQA_tr_NA_tr_test.json
---
# MultiNativQA: Multilingual Culturally-Aligned Natural Queries For LLMs
### Overview
The **MultiNativQA** dataset is a multilingual, native, and culturally aligned question-answering resource. It spans 7 languages, ranging from high- to extremely low-resource, and covers 9 different locations/cities. To capture linguistic diversity, the dataset includes several dialects for dialect-rich languages like Arabic. In addition to Modern Standard Arabic (MSA), **MultiNativQA** features six Arabic dialects — *Egyptian, Jordanian, Khaliji, Sudanese, Tunisian*, and *Yemeni*.
The dataset also provides two linguistic variations of Bangla, reflecting differences between speakers in *Bangladesh* and *West Bengal, India*. Additionally, **MultiNativQA** includes English queries from *Dhaka* and *Doha*, where English is commonly used as a second language, as well as from *New York, USA*.
The QA pairs in this dataset cover 18 diverse topics, including: *Animals, Business, Clothing, Education, Events, Food & Drinks, General, Geography, Immigration, Language, Literature, Names & Persons, Plants, Religion, Sports & Games, Tradition, Travel*, and *Weather*.
**MultiNativQA** is designed to evaluate and fine-tune large language models (LLMs) for long-form question answering while assessing their cultural adaptability and understanding.
### Directory Structure (JSON files only)
The dataset is organized into directories based on language and region. Each directory contains JSON files for the train, development, and test sets, with the exception of Nepali, which consists of only a test set.
- `arabic_qa/`
- `NativQA_ar_msa_qa_dev.json`
- `NativQA_ar_msa_qa_test.json`
- `NativQA_ar_msa_qa_train.json`
- `assamese_in/`
- `NativQA_asm_NA_in_dev.json`
- `NativQA_asm_NA_in_test.json`
- `NativQA_asm_NA_in_train.json`
- `bangla_bd/`
- `NativQA_bn_scb_bd_dev.json`
- `NativQA_bn_scb_bd_test.json`
- `NativQA_bn_scb_bd_train.json`
- `bangla_in/`
- `NativQA_bn_scb_in_dev.json`
- `NativQA_bn_scb_in_test.json`
- `NativQA_bn_scb_in_train.json`
- `english_bd/`
- `NativQA_en_NA_bd_dev.json`
- `NativQA_en_NA_bd_test.json`
- `NativQA_en_NA_bd_train.json`
- `english_qa/`
- `NativQA_en_NA_qa_dev.json`
- `NativQA_en_NA_qa_test.json`
- `NativQA_en_NA_qa_train.json`
- `hindi_in/`
- `NativQA_hi_NA_in_dev.json`
- `NativQA_hi_NA_in_test.json`
- `NativQA_hi_NA_in_train.json`
- `nepali_np/`
- `NativQA_ne_NA_np_test.json`
- `turkish_tr/`
- `NativQA_tr_NA_tr_dev.json`
- `NativQA_tr_NA_tr_test.json`
- `NativQA_tr_NA_tr_train.json`
#### Example of a data
```
{
"data_id": "cf92ec1e52b4b3071d263a1063b43928",
"category": "immigration",
"input_query": "How long can you stay in Qatar on a visitors visa?",
"question": "Can I extend my tourist visa in Qatar?",
"is_reliable": "very_reliable",
"answer": "If you would like to extend your visa, you will need to proceed to immigration headquarters in Doha prior to the expiry of your visa and apply there for an extension.",
"source_answer_url": "https://hayya.qa/en/web/hayya/faq"
}
```
##### Field Descriptions:
- **`data_id`**: Unique identifier for each data entry.
- **`category`**: General topic or category of the query (e.g., "health", "religion").
- **`input_query`**: The original user-submitted query.
- **`question`**: The formalized question derived from the input query.
- **`is_reliable`**: Indicates the reliability of the provided answer (`"very_reliable"`, `"somewhat_reliable"`, `"unreliable"`).
- **`answer`**: The system-provided answer to the query.
- **`source_answer_url`**: URL of the source from which the answer was derived.
### Statistics
Distribution of the **MultiNativQA** dataset across different languages.
<p align="left"> <img src="./language_donut_chart.png" style="width: 60%;" id="title-icon"> </p>
This dataset consists of two types of data: annotated and un-annotated. We considered the un-annotated data as additional data. Please find the data statistics below:
Statistics of our **MultiNativQA** dataset including languages with the final annotated QA pairs from different location.
| Language | City | Train | Dev | Test | Total |
|-------------|------------|---------|-------|--------|--------|
| Arabic | Doha | 3,649 | 492 | 988 | 5,129 |
| Assamese | Assam | 1,131 | 157 | 545 | 1,833 |
| Bangla | Dhaka | 7,018 | 953 | 1,521 | 9,492 |
| Bangla | Kolkata | 6,891 | 930 | 2,146 | 9,967 |
| English | Dhaka | 4,761 | 656 | 1,113 | 6,530 |
| English | Doha | 8,212 | 1,164 | 2,322 | 11,698 |
| Hindi | Delhi | 9,288 | 1,286 | 2,745 | 13,319 |
| Nepali | Kathmandu | -- | -- | 561 | 561 |
| Turkish | Istanbul | 3,527 | 483 | 1,218 | 5,228 |
| **Total** | | **44,477** | **6,121** | **13,159** | **63,757** |
We provide the un-annotated additional data stats below:
| Language-Location | # of QA |
|-------------------------|---------------|
| Arabic-Egypt | 7,956 |
| Arabic-Palestine | 5,679 |
| Arabic-Sudan | 4,718 |
| Arabic-Syria | 11,288 |
| Arabic-Tunisia | 14,789 |
| Arabic-Yemen | 4,818 |
| English-New York | 6,454 |
| **Total** | **55,702** |
### License
The dataset is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0). The full license text can be found in the accompanying licenses_by-nc-sa_4.0_legalcode.txt file.
### Contact & Additional Information
For more details, please visit our [official website](http://nativqa.gitlab.io/).
### Citation
You can access the full paper [here](https://arxiv.org/pdf/2407.09823).
```
@article{hasan2024nativqa,
title={NativQA: Multilingual Culturally-Aligned Natural Query for LLMs},
author={Hasan, Md Arid and Hasanain, Maram and Ahmad, Fatema and Laskar, Sahinur Rahman and Upadhyay, Sunaya and Sukhadia, Vrunda N and Kutlu, Mucahid and Chowdhury, Shammur Absar and Alam, Firoj},
journal={arXiv preprint arXiv:2407.09823},
year={2024}
publisher={arXiv:2407.09823},
url={https://arxiv.org/abs/2407.09823},
}
```
|