import bz2 from typing import Iterator, Dict, Any, List, Optional import pandas as pd import os import hashlib import json from sklearn.model_selection import StratifiedKFold import numpy as np from multiprocessing import Pool, cpu_count from functools import partial import subprocess from .utils import ( read_jsonl_fields_fast, process_answer_types, create_stratified_subsets, subset_jsonl_file, ) class CragSampler: """Main class for handling CRAG dataset sampling operations.""" def __init__( self, input_file: str, required_fields: Optional[List[str]] = None, use_cache: bool = True, ): """Initialize CragSampler. Args: input_file: Path to input JSONL file (can be bz2 compressed) required_fields: List of field names to extract. If None, uses default fields use_cache: Whether to use/create cache file """ self.input_file = input_file self.required_fields = required_fields or [ "domain", "answer", "question_type", "static_or_dynamic", ] self.use_cache = use_cache self.df = self._load_data() def _load_data(self) -> pd.DataFrame: """Load and process data from JSONL file.""" df = read_jsonl_fields_fast( self.input_file, self.required_fields, self.use_cache ) return process_answer_types(df) def create_subsets( self, n_subsets: int = 5, stratify_columns: Optional[List[str]] = None, output_path: Optional[str] = None, force_compute: bool = False, ) -> Dict: """Create stratified subsets of the dataset. Args: n_subsets: Number of subsets to create stratify_columns: Columns to use for stratification. If None, uses defaults output_path: Path to save/load the JSON output force_compute: If True, always compute subsets even if file exists Returns: Dictionary containing the subsets information """ if stratify_columns is None: stratify_columns = [ "domain", "answer_type", "question_type", "static_or_dynamic", ] if output_path is None: output_path = os.path.join( os.path.dirname(self.input_file), f"{os.path.splitext(os.path.basename(self.input_file))[0]}_subsets.json", ) return create_stratified_subsets( self.df, n_subsets=n_subsets, stratify_columns=stratify_columns, output_path=output_path, force_compute=force_compute, ) def write_subsets( self, subsets_file: str, output_dir: Optional[str] = None, compress: bool = True, n_processes: Optional[int] = None, overwrite: bool = False, ) -> None: """Write subsets to separate files. Args: subsets_file: Path to JSON file containing subset indices output_dir: Directory to save subset files compress: Whether to compress output files with bz2 n_processes: Number of processes to use overwrite: If False, skip existing output files """ subset_jsonl_file( self.input_file, subsets_file, output_dir=output_dir, compress=compress, n_processes=n_processes, overwrite=overwrite, )