RaphaelOlivier
commited on
Commit
•
ddf469d
1
Parent(s):
be94471
Upload librispeech_asr_adversarial.py
Browse files- librispeech_asr_adversarial.py +139 -0
librispeech_asr_adversarial.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""Adversarial examples based on the Librispeech automatic speech recognition dataset."""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import glob
|
22 |
+
import os
|
23 |
+
|
24 |
+
import datasets
|
25 |
+
|
26 |
+
|
27 |
+
# TODO: change
|
28 |
+
_CITATION = """\
|
29 |
+
@inproceedings{panayotov2015librispeech,
|
30 |
+
title={Librispeech: an ASR corpus based on public domain audio books},
|
31 |
+
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
|
32 |
+
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
|
33 |
+
pages={5206--5210},
|
34 |
+
year={2015},
|
35 |
+
organization={IEEE}
|
36 |
+
}
|
37 |
+
"""
|
38 |
+
|
39 |
+
# TODO: change
|
40 |
+
_DESCRIPTION = """\
|
41 |
+
LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,
|
42 |
+
prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read
|
43 |
+
audiobooks from the LibriVox project, and has been carefully segmented and aligned.
|
44 |
+
Note that in order to limit the required storage for preparing this dataset, the audio
|
45 |
+
is stored in the .flac format and is not converted to a float32 array. To convert, the audio
|
46 |
+
file to a float32 array, please make use of the `.map()` function as follows:
|
47 |
+
```python
|
48 |
+
import soundfile as sf
|
49 |
+
def map_to_array(batch):
|
50 |
+
speech_array, _ = sf.read(batch["file"])
|
51 |
+
batch["speech"] = speech_array
|
52 |
+
return batch
|
53 |
+
dataset = dataset.map(map_to_array, remove_columns=["file"])
|
54 |
+
```
|
55 |
+
"""
|
56 |
+
# TODO: change
|
57 |
+
_DL_URL = "https://drive.google.com/file/d/1oaBhaHlY4TD2JcvenR-6OZNIsyPG8OGN/view?usp=sharing"
|
58 |
+
|
59 |
+
|
60 |
+
class LibrispeechASRConfig(datasets.BuilderConfig):
|
61 |
+
"""BuilderConfig for LibriSpeechASR."""
|
62 |
+
|
63 |
+
def __init__(self, **kwargs):
|
64 |
+
"""
|
65 |
+
Args:
|
66 |
+
data_dir: `string`, the path to the folder containing the files in the
|
67 |
+
downloaded .tar
|
68 |
+
citation: `string`, citation for the data set
|
69 |
+
url: `string`, url for information about the data set
|
70 |
+
**kwargs: keyword arguments forwarded to super.
|
71 |
+
"""
|
72 |
+
super(LibrispeechASRConfig, self).__init__(
|
73 |
+
version=datasets.Version("2.1.0", ""), **kwargs)
|
74 |
+
|
75 |
+
|
76 |
+
class LibrispeechASR(datasets.GeneratorBasedBuilder):
|
77 |
+
"""Librispeech dataset."""
|
78 |
+
|
79 |
+
BUILDER_CONFIGS = [
|
80 |
+
LibrispeechASRConfig(name="adv", description="'Adversarial' speech."),
|
81 |
+
]
|
82 |
+
|
83 |
+
def _info(self):
|
84 |
+
return datasets.DatasetInfo(
|
85 |
+
description=_DESCRIPTION,
|
86 |
+
features=datasets.Features(
|
87 |
+
{
|
88 |
+
"file": datasets.Value("string"),
|
89 |
+
"audio": datasets.features.Audio(sampling_rate=16_000),
|
90 |
+
"text": datasets.Value("string"),
|
91 |
+
"id": datasets.Value("string"),
|
92 |
+
}
|
93 |
+
),
|
94 |
+
supervised_keys=("speech", "text"),
|
95 |
+
homepage=_DL_URL,
|
96 |
+
citation=_CITATION,
|
97 |
+
)
|
98 |
+
|
99 |
+
def _split_generators(self, dl_manager):
|
100 |
+
archive_path = dl_manager.download_and_extract(
|
101 |
+
_DL_URL)
|
102 |
+
return [
|
103 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={
|
104 |
+
"archive_path": archive_path["dev"], "split_name": f"dev_{self.config.name}"}),
|
105 |
+
]
|
106 |
+
|
107 |
+
def _generate_examples(self, archive_path, split_name):
|
108 |
+
"""Generate examples from a Librispeech archive_path."""
|
109 |
+
transcripts_glob = os.path.join(archive_path, "**/*.txt")
|
110 |
+
if split_name.endswith("adv-txt"):
|
111 |
+
split_folder = split_name[:-7]
|
112 |
+
use_adv_transcript = True
|
113 |
+
else:
|
114 |
+
assert split_name.endswith("nat-txt")
|
115 |
+
split_folder = split_name[:-7]
|
116 |
+
use_adv_transcript = False
|
117 |
+
|
118 |
+
for transcript_file in glob.glob(transcripts_glob):
|
119 |
+
path = os.path.dirname(transcript_file)
|
120 |
+
audio_path = os.path.join(path, split_folder)
|
121 |
+
with open(os.path.join(path, transcript_file)) as f:
|
122 |
+
for line in f:
|
123 |
+
line = line.strip()
|
124 |
+
key, og_transcript, adv_transcript = line.split(",", 2)
|
125 |
+
transcript = adv_transcript if use_adv_transcript else og_transcript
|
126 |
+
suffix = "adv" if use_adv_transcript else "nat"
|
127 |
+
audio_file = f"{key}_{suffix}.wav"
|
128 |
+
speaker_id, chapter_id = [int(el)
|
129 |
+
for el in key.split("-")[:2]]
|
130 |
+
split_key = key+"_"+suffix+"_"+split_name
|
131 |
+
example = {
|
132 |
+
"id": split_key,
|
133 |
+
"speaker_id": speaker_id,
|
134 |
+
"chapter_id": chapter_id,
|
135 |
+
"file": os.path.join(audio_path, audio_file),
|
136 |
+
"audio": os.path.join(audio_path, audio_file),
|
137 |
+
"text": transcript,
|
138 |
+
}
|
139 |
+
yield split_key, example
|