jeli-asr / scripts /create_data_manifest.py
diarray's picture
Publish Jeli-ASR version 1.0.0
30411f8
raw
history blame
10.5 kB
"""
Copyright 2024 RobotsMali AI4D Lab.
Licensed under the Creative Commons Attribution 4.0 International License (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://creativecommons.org/licenses/by/4.0/
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
## Imports
import glob
import os
import csv
import random
import json
import shutil
import sys
from pydub import AudioSegment
# Key callable to sort wav files paths
def key_sort_paths(path: str) -> int:
"""Serve as key function to sort the wav files paths
Args:
path (str): An individual path
Returns:
int: The number of the split (between 1 and 6)
"""
return int(path[-5])
# Function to read and combine the audios
def read_audios(glob_paths: list[str]) -> AudioSegment:
"""Read the six 10 mns audio as AudioSegments and returns the combined 1 hr audio
Args:
glob_paths (list[str]): list of the paths of the 6 .wav files
Returns:
AudioSegment: The combined audio
"""
audios = []
for wav_file in sorted(glob_paths, key=key_sort_paths):
audios.append(AudioSegment.from_file(file=wav_file, format="wav"))
final_audio = sum(audios[1:], start=audios[0])
return final_audio
# A function that reads and return the utterances from .tsv files
def read_tsv(tsv_file_path: str) -> list[list[int | str]]:
"""Read a .tsv file and return the utterances in it
Args:
tsv_file_path (str): The path to the tsv file
Returns:
list[list[int | str]]: The returned utterances with the timestamps coverted to int
"""
with open(tsv_file_path,"r", encoding='utf-8') as recording_transcript:
tsv_file_rows = csv.reader(recording_transcript, delimiter="\t")
utterances = [[int(start), int(end), bam, french] for start, end, bam, french in tsv_file_rows]
return utterances
# Function to subdivide the audio (transcript) into multiple variable length slices
def create_var_length_samples(utterances: list[list[int | str]], min_duration: int = 1000,
max_duration: int = 120000) -> list[list[list[int | str]]]:
"""Create variable length combination of utterances to make samples which duration vary between 1s and 2mns
Args:
utterances (list[list[int | str]]): The read tsv file containing the transcriptions of the audio
min_duration (int, optional): min duration of a sample in milliseconds. Defaults to 1000.
max_duration (int, optional): max duration of a sample in milliseconds. Defaults to 120000.
Returns:
list[list[list[int | str]]]: The list of created samples
"""
samples = []
current_slice = []
current_duration = 0
i = 0
while i < len(utterances):
utterance_start, utterance_end = utterances[i][:2]
utterance_duration = utterance_end - utterance_start
# If current slice duration is less than max duration, add the utterance to this sample
if current_duration + utterance_duration <= max_duration:
current_slice.append(utterances[i])
current_duration += utterance_duration
i += 1
else:
# Save the current sample and reset for a new one
samples.append(current_slice)
current_slice = []
current_duration = 0
# Randomly decide whether to end the current sample based on time or number of utterances
if current_duration >= min_duration:
if random.choice([True, False, False]) or len(current_slice) >= random.randint(1, 20):
samples.append(current_slice)
current_slice = []
current_duration = 0
# Add the final slice if it exists
if current_slice: # equivalent to if current_slice is empty
samples.append(current_slice)
return samples
# Function to create and save the audio samples for a specific list of samples
def slice_and_save_audios(samples: list[list[list[int | str]]], griot_id: str,
data_dir: str, audio_dir_path: str) -> list[list[float | str]]:
"""Slice and save the audio samples created for a specific 1hr recording
Args:
samples (list[list[list[int | str]]]): The samples created with function "create_var_length_samples"
griot_id (str): The ID of the griot in the recording (eg: griots_r17)
data_dir (str): The directory containing all the data.
audio_dir_path (str): The diretory the save the sliced audios in.
Returns:
list[list[int | str]]: A list version of manifests (eg: [[audiofile_path, duration, bambara, translation], ...])
"""
wav_files_paths = glob.glob(f'{data_dir}/{griot_id}/*.wav')
griot_recording = read_audios(glob_paths=wav_files_paths)
# A list to store only the data needed to create
list_manifests = []
for sample in samples:
start = sample[0][0]
end = sample[-1][1]
duration = (end - start) / 1000 # in seconds
# Flag audios with more than 100 seconds
more_than_100s = " ###" if duration >= 100 else ""
# get trancriptions and translations of utterances composing the samples
transcriptions, translations = [utt[2] for utt in sample], [utt[3] for utt in sample]
transcription = " ".join(transcriptions)
translation = " ".join(translations)
# create the sample wav file and save it
audio_file_path = f"{audio_dir_path}/{griot_id}-{start}-{end}.wav"
griot_recording[start:end].export(out_f=audio_file_path, format="wav")
print(f"Sample {griot_id}-{start}-{end} saved in {audio_file_path}{more_than_100s}")
# Create the manifest list and save it
list_manifests.append([audio_file_path, duration, transcription, translation])
return list_manifests
# A function to shuffle and split samples
def shuffle_and_split(dataset: list[list[float | str]],
test: int | float = 0.15) -> tuple[list[list[float | str]]]:
"""Shuffle and split the whole dataset
Args:
dataset (list[list[int | str]]): The combined list of all list manifest returned by "slice_and_save_audios"
test (int | float, optional): The number of sample to include that make the test set or and percentage of the whole dataset to use as the test set. Defaults to 0.15.
Returns:
tuple[list[list[list[int | str]]]]: The train and test sets samples returned separately
"""
random.shuffle(dataset)
if isinstance(test, float):
test = int(test * len(dataset))
test_set_samples = dataset[0:test]
train_set_samples = dataset[test:]
return train_set_samples, test_set_samples
# A function to create audio sample files and manifests
def create_manifest(dataset_split: list[list[float | str]], split_name: str,
dir_path: str) -> None:
"""Create manifest files
Args:
dataset_split (list[list[float | str]]): Split of the dataset to create manifest for
split_name (str): Name of the split
dir_path (str): The directory to save the new data manifest in
"""
# Ensure directories for manifests and audios
os.makedirs(f'{dir_path}/manifests', exist_ok=True)
os.makedirs(f'{dir_path}/french-manifests', exist_ok=True)
os.makedirs(f'{dir_path}/audios/{split_name}', exist_ok=True)
# Define manifest file paths
manifest_path = f'{dir_path}/manifests/{split_name}_manifest.json'
french_manifest_path = f'{dir_path}/french-manifests/{split_name}_french_manifest.json'
audio_dir_path = f'{dir_path}/audios/{split_name}'
with open(manifest_path, 'w', encoding="utf-8") as manifest_file, open(french_manifest_path, 'w', encoding="utf-8") as french_file:
for sample in dataset_split:
# move the audio sample file in the corresponding split directory
new_audio_path = f'{audio_dir_path}/{sample[0].split("/")[-1]}'
shutil.move(src=sample[0], dst=new_audio_path)
# Prepare the manifest line
manifest_line = {
"audio_filepath": os.path.relpath(new_audio_path),
"duration": sample[1],
"text": sample[2] # Bambara transcription goes to the text field
}
french_manifest_line = {
"audio_filepath": os.path.relpath(new_audio_path),
"duration": sample[1],
"text": sample[3]
}
# Write manifest files
manifest_file.write(json.dumps(manifest_line) + '\n')
french_file.write(json.dumps(french_manifest_line) + '\n')
print(f"{split_name} manifests files have been created successfully!\nCorresponding audios files have been moved to {audio_dir_path}")
if __name__ == "__main__":
data_path = sys.argv[1]
manifest_dir = sys.argv[2]
tsv_dir = f'{data_path}/aligned-transcriptions'
# Get all the revised transcription files in .tsv format
tsv_paths = glob.glob(f'{tsv_dir}/*.tsv')
# list to store the list manifests per griots
final_list_manifest = []
for tsv_file in tsv_paths:
id_griot = tsv_file.split("/")[-1][:-4]
griot_utterances = read_tsv(tsv_file_path=tsv_file)
# Get samples (can be made of one or more utterances)
griot_samples = create_var_length_samples(utterances=griot_utterances)
list_manifest = slice_and_save_audios(samples=griot_samples, griot_id=id_griot,
data_dir=data_path, audio_dir_path=f'{manifest_dir}/audios')
final_list_manifest.append(list_manifest)
# Get a single list manifest for all the samples
final_list_manifest = sum(final_list_manifest, start=[])
# Shuffle and split the final list of all sample,manifests
train_set, test_set = shuffle_and_split(dataset=final_list_manifest, test=0.15) # Use 15% of the dataset for test
print(f'len(train_set) == {len(train_set)} and len(test_set) == {len(test_set)}')
create_manifest(dataset_split=train_set, split_name="train", dir_path=manifest_dir)
create_manifest(dataset_split=test_set, split_name="test", dir_path=manifest_dir)