rombodawg commited on
Commit
73a0839
·
verified ·
1 Parent(s): e5f0657

Update Galore_8bit_Version-2.py

Browse files
Files changed (1) hide show
  1. Galore_8bit_Version-2.py +271 -271
Galore_8bit_Version-2.py CHANGED
@@ -1,271 +1,271 @@
1
- import torch
2
- import torch.nn as nn
3
- from transformers import (
4
- AutoModelForCausalLM,
5
- AutoTokenizer,
6
- DataCollatorForLanguageModeling,
7
- BitsAndBytesConfig
8
- )
9
- from datasets import load_dataset
10
- from tqdm import tqdm
11
- from galore_torch import GaLoreAdamW8bit
12
- import torch.amp as amp
13
- from torch.utils.data import DataLoader
14
- from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
15
- import gc
16
- import os
17
- import json
18
- import shutil
19
- import argparse
20
-
21
- def save_training_state(checkpoint_dir, step, epoch, optimizer_state, scheduler_state):
22
- """Save training progress, optimizer and scheduler state"""
23
- state = {
24
- 'step': step,
25
- 'epoch': epoch,
26
- 'optimizer_state': optimizer_state,
27
- 'scheduler_state': scheduler_state
28
- }
29
- with open(os.path.join(checkpoint_dir, 'training_state.json'), 'w') as f:
30
- json.dump(state, f)
31
-
32
- def load_training_state(checkpoint_dir):
33
- """Load training progress, optimizer and scheduler state"""
34
- state_path = os.path.join(checkpoint_dir, 'training_state.json')
35
- if os.path.exists(state_path):
36
- with open(state_path, 'r') as f:
37
- return json.load(f)
38
- return None
39
-
40
- def main():
41
- # Set the number of epochs here
42
- num_epochs = 1 # Change this value to your desired number of epochs
43
-
44
- # Training configuration
45
- save_interval = 100000000000000000 # Change this number to save checkpoint at specified step during training
46
- checkpoint_dir = "C:/Path/to/AI/Model/Checkpoint"
47
- keep_last_checkpoints = 3
48
-
49
- # Initialize starting point
50
- start_step = 0
51
- start_epoch = 0
52
-
53
- # Load the tokenizer and model
54
- model_path = "C:/Path/to/Input/AI/Model"
55
- os.makedirs(checkpoint_dir, exist_ok=True)
56
-
57
- tokenizer = AutoTokenizer.from_pretrained(model_path)
58
- tokenizer.pad_token = tokenizer.eos_token
59
-
60
- # Modified 8-bit configuration
61
- bnb_config = BitsAndBytesConfig(
62
- load_in_8bit=True,
63
- bnb_4bit_compute_dtype=torch.float16
64
- )
65
-
66
- model = AutoModelForCausalLM.from_pretrained(
67
- model_path,
68
- quantization_config=bnb_config,
69
- torch_dtype=torch.float16,
70
- low_cpu_mem_usage=True,
71
- device_map={"": 0}
72
- )
73
-
74
- # Dataset preparation
75
- cache_dir = "C:/Path/to/Cache/Location"
76
- os.makedirs(cache_dir, exist_ok=True)
77
-
78
- dataset = load_dataset(
79
- "json",
80
- data_files="C:/Path/to/Training/Dataset.json",
81
- split="train",
82
- cache_dir=cache_dir
83
- )
84
-
85
- def preprocess(example):
86
- formatted_text = (
87
- f"<|im_start|>system\n\n"
88
- f"{example['instruction']}<|im_end|>\n"
89
- f"<|im_start|>user\n\n"
90
- f"{example['input']}<|im_end|>\n"
91
- f"<|im_start|>assistant\n\n"
92
- f"{example['output']}<|im_end|>"
93
- )
94
-
95
- tokenized = tokenizer(
96
- formatted_text,
97
- truncation=True,
98
- max_length=2048,
99
- padding='max_length',
100
- return_tensors=None
101
- )
102
-
103
- tokenized['labels'] = tokenized['input_ids'].copy()
104
- return tokenized
105
-
106
- tokenized_dataset = dataset.map(
107
- preprocess,
108
- batched=True,
109
- batch_size=100,
110
- num_proc=12,
111
- remove_columns=dataset.column_names,
112
- cache_file_name=os.path.join(cache_dir, "processed_dataset.arrow")
113
- )
114
-
115
- data_collator = DataCollatorForLanguageModeling(
116
- tokenizer=tokenizer,
117
- mlm=False
118
- )
119
-
120
- batch_size = 4000
121
- train_dataloader = DataLoader(
122
- tokenized_dataset,
123
- batch_size=batch_size,
124
- shuffle=True,
125
- num_workers=3,
126
- pin_memory=True,
127
- collate_fn=data_collator
128
- )
129
-
130
- # Optimizer setup
131
- accumulation_steps = 20
132
- galore_params = []
133
- target_modules_list = ["attn", "mlp"]
134
-
135
- for module_name, module in model.named_modules():
136
- if not isinstance(module, nn.Linear):
137
- continue
138
- if not any(target_key in module_name for target_key in target_modules_list):
139
- continue
140
- module.weight.data = module.weight.data.to(torch.float16)
141
- galore_params.append(module.weight)
142
-
143
- id_galore_params = [id(p) for p in galore_params]
144
- regular_params = [p for p in model.parameters() if id(p) not in id_galore_params]
145
-
146
- for param in regular_params:
147
- if param.requires_grad:
148
- param.data = param.data.to(torch.float16)
149
-
150
- param_groups = [
151
- {'params': regular_params},
152
- {
153
- 'params': galore_params,
154
- 'rank': 64,
155
- 'update_proj_gap': 200,
156
- 'scale': 0.25,
157
- 'proj_type': 'std'
158
- }
159
- ]
160
-
161
- optimizer = GaLoreAdamW8bit(param_groups, lr=3e-4)
162
-
163
- # Calculate scheduler parameters
164
- total_training_steps = len(train_dataloader)
165
- first_cycle_steps = int(total_training_steps * 0.1) # First cycle is 10% of total steps
166
-
167
- # Initialize the cosine scheduler with warm restarts
168
- scheduler = CosineAnnealingWarmRestarts(
169
- optimizer,
170
- T_0=first_cycle_steps, # Length of first cycle
171
- T_mult=2, # Each cycle is 1.5x longer than the last
172
- eta_min=1e-6 # Minimum learning rate
173
- )
174
-
175
- # Training loop
176
- model.train()
177
- total_steps = len(train_dataloader)
178
- prev_avg_loss = 0 # Initialize for moving average calculation
179
-
180
- for epoch in range(start_epoch, num_epochs):
181
- running_loss = 0.0
182
- optimizer.zero_grad()
183
-
184
- progress_bar = tqdm(enumerate(train_dataloader), total=total_steps, initial=start_step)
185
-
186
- for step, batch in progress_bar:
187
- if step < start_step:
188
- continue
189
-
190
- # Process batch
191
- inputs = {
192
- k: v.view(-1, v.size(-1)).cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v
193
- for k, v in batch.items()
194
- }
195
-
196
- if 'attention_mask' not in inputs:
197
- inputs['attention_mask'] = torch.ones_like(inputs['input_ids'])
198
-
199
- # Forward and backward passes
200
- outputs = model(**inputs)
201
- loss = outputs.loss / accumulation_steps
202
- loss.backward()
203
-
204
- running_loss += loss.item()
205
-
206
- if (step + 1) % accumulation_steps == 0:
207
- # Clip gradients
208
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
209
-
210
- optimizer.step()
211
- scheduler.step() # Update learning rate
212
- optimizer.zero_grad()
213
-
214
- # Calculate metrics for progress bar
215
- current_lr = scheduler.get_last_lr()[0] # Get current learning rate
216
- current_loss = running_loss
217
- avg_loss = current_loss if step == 0 else (current_loss * 0.1 + prev_avg_loss * 0.9)
218
- prev_avg_loss = avg_loss
219
-
220
- progress_bar.set_postfix({
221
- 'epoch': epoch + 1,
222
- 'loss': f'{current_loss:.4f}',
223
- 'avg_loss': f'{avg_loss:.4f}',
224
- 'lr': f'{current_lr:.2e}',
225
- 'step': f'{step}/{total_steps}'
226
- })
227
-
228
- running_loss = 0.0
229
-
230
- # Save checkpoint
231
- if step > 0 and step % save_interval == 0:
232
- checkpoint_path = f"{checkpoint_dir}/checkpoint-{step}"
233
- model.save_pretrained(checkpoint_path)
234
-
235
- save_training_state(
236
- checkpoint_path,
237
- step,
238
- epoch,
239
- optimizer.state_dict(),
240
- scheduler.state_dict()
241
- )
242
-
243
- # Remove old checkpoints
244
- checkpoints = sorted([d for d in os.listdir(checkpoint_dir)
245
- if d.startswith('checkpoint-')])
246
- while len(checkpoints) > keep_last_checkpoints:
247
- oldest_checkpoint = checkpoints.pop(0)
248
- shutil.rmtree(os.path.join(checkpoint_dir, oldest_checkpoint))
249
-
250
- # Memory cleanup
251
- if step % 100 == 0:
252
- gc.collect()
253
- torch.cuda.empty_cache()
254
-
255
- progress_bar.close()
256
-
257
- # Save final model
258
- final_path = "C:/Path/to/AI/Model/Final/Output"
259
- model.save_pretrained(final_path)
260
- tokenizer.save_pretrained(final_path)
261
-
262
- save_training_state(
263
- final_path,
264
- total_steps,
265
- epoch,
266
- optimizer.state_dict(),
267
- scheduler.state_dict()
268
- )
269
-
270
- if __name__ == "__main__":
271
- main()
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from transformers import (
4
+ AutoModelForCausalLM,
5
+ AutoTokenizer,
6
+ DataCollatorForLanguageModeling,
7
+ BitsAndBytesConfig
8
+ )
9
+ from datasets import load_dataset
10
+ from tqdm import tqdm
11
+ from galore_torch import GaLoreAdamW8bit
12
+ import torch.amp as amp
13
+ from torch.utils.data import DataLoader
14
+ from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
15
+ import gc
16
+ import os
17
+ import json
18
+ import shutil
19
+ import argparse
20
+
21
+ def save_training_state(checkpoint_dir, step, epoch, optimizer_state, scheduler_state):
22
+ """Save training progress, optimizer and scheduler state"""
23
+ state = {
24
+ 'step': step,
25
+ 'epoch': epoch,
26
+ 'optimizer_state': optimizer_state,
27
+ 'scheduler_state': scheduler_state
28
+ }
29
+ with open(os.path.join(checkpoint_dir, 'training_state.json'), 'w') as f:
30
+ json.dump(state, f)
31
+
32
+ def load_training_state(checkpoint_dir):
33
+ """Load training progress, optimizer and scheduler state"""
34
+ state_path = os.path.join(checkpoint_dir, 'training_state.json')
35
+ if os.path.exists(state_path):
36
+ with open(state_path, 'r') as f:
37
+ return json.load(f)
38
+ return None
39
+
40
+ def main():
41
+ # Set the number of epochs here
42
+ num_epochs = 1 # Change this value to your desired number of epochs
43
+
44
+ # Training configuration
45
+ save_interval = 100000000000000000 # Change this number to save checkpoint at specified step during training
46
+ checkpoint_dir = "C:/Path/to/AI/Model/Checkpoint"
47
+ keep_last_checkpoints = 3
48
+
49
+ # Initialize starting point
50
+ start_step = 0
51
+ start_epoch = 0
52
+
53
+ # Load the tokenizer and model
54
+ model_path = "C:/Path/to/Input/AI/Model"
55
+ os.makedirs(checkpoint_dir, exist_ok=True)
56
+
57
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
58
+ tokenizer.pad_token = tokenizer.eos_token
59
+
60
+ # Modified 8-bit configuration
61
+ bnb_config = BitsAndBytesConfig(
62
+ load_in_8bit=True,
63
+ bnb_4bit_compute_dtype=torch.float16
64
+ )
65
+
66
+ model = AutoModelForCausalLM.from_pretrained(
67
+ model_path,
68
+ quantization_config=bnb_config,
69
+ torch_dtype=torch.float16,
70
+ low_cpu_mem_usage=True,
71
+ device_map={"": 0}
72
+ )
73
+
74
+ # Dataset preparation
75
+ cache_dir = "C:/Path/to/Cache/Location"
76
+ os.makedirs(cache_dir, exist_ok=True)
77
+
78
+ dataset = load_dataset(
79
+ "json",
80
+ data_files="C:/Path/to/Training/Dataset.json",
81
+ split="train",
82
+ cache_dir=cache_dir
83
+ )
84
+
85
+ def preprocess(example):
86
+ formatted_text = (
87
+ f"<|im_start|>system\n\n"
88
+ f"{example['instruction']}<|im_end|>\n"
89
+ f"<|im_start|>user\n\n"
90
+ f"{example['input']}<|im_end|>\n"
91
+ f"<|im_start|>assistant\n\n"
92
+ f"{example['output']}<|im_end|>"
93
+ )
94
+
95
+ tokenized = tokenizer(
96
+ formatted_text,
97
+ truncation=True,
98
+ max_length=2048,
99
+ padding='max_length',
100
+ return_tensors=None
101
+ )
102
+
103
+ tokenized['labels'] = tokenized['input_ids'].copy()
104
+ return tokenized
105
+
106
+ tokenized_dataset = dataset.map(
107
+ preprocess,
108
+ batched=True,
109
+ batch_size=100,
110
+ num_proc=12,
111
+ remove_columns=dataset.column_names,
112
+ cache_file_name=os.path.join(cache_dir, "processed_dataset.arrow")
113
+ )
114
+
115
+ data_collator = DataCollatorForLanguageModeling(
116
+ tokenizer=tokenizer,
117
+ mlm=False
118
+ )
119
+
120
+ batch_size = 2
121
+ train_dataloader = DataLoader(
122
+ tokenized_dataset,
123
+ batch_size=batch_size,
124
+ shuffle=True,
125
+ num_workers=3,
126
+ pin_memory=True,
127
+ collate_fn=data_collator
128
+ )
129
+
130
+ # Optimizer setup
131
+ accumulation_steps = 20
132
+ galore_params = []
133
+ target_modules_list = ["attn", "mlp"]
134
+
135
+ for module_name, module in model.named_modules():
136
+ if not isinstance(module, nn.Linear):
137
+ continue
138
+ if not any(target_key in module_name for target_key in target_modules_list):
139
+ continue
140
+ module.weight.data = module.weight.data.to(torch.float16)
141
+ galore_params.append(module.weight)
142
+
143
+ id_galore_params = [id(p) for p in galore_params]
144
+ regular_params = [p for p in model.parameters() if id(p) not in id_galore_params]
145
+
146
+ for param in regular_params:
147
+ if param.requires_grad:
148
+ param.data = param.data.to(torch.float16)
149
+
150
+ param_groups = [
151
+ {'params': regular_params},
152
+ {
153
+ 'params': galore_params,
154
+ 'rank': 64,
155
+ 'update_proj_gap': 200,
156
+ 'scale': 0.25,
157
+ 'proj_type': 'std'
158
+ }
159
+ ]
160
+
161
+ optimizer = GaLoreAdamW8bit(param_groups, lr=3e-4)
162
+
163
+ # Calculate scheduler parameters
164
+ total_training_steps = len(train_dataloader)
165
+ first_cycle_steps = int(total_training_steps * 0.1) # First cycle is 10% of total steps
166
+
167
+ # Initialize the cosine scheduler with warm restarts
168
+ scheduler = CosineAnnealingWarmRestarts(
169
+ optimizer,
170
+ T_0=first_cycle_steps, # Length of first cycle
171
+ T_mult=2, # Each cycle is 1.5x longer than the last
172
+ eta_min=1e-6 # Minimum learning rate
173
+ )
174
+
175
+ # Training loop
176
+ model.train()
177
+ total_steps = len(train_dataloader)
178
+ prev_avg_loss = 0 # Initialize for moving average calculation
179
+
180
+ for epoch in range(start_epoch, num_epochs):
181
+ running_loss = 0.0
182
+ optimizer.zero_grad()
183
+
184
+ progress_bar = tqdm(enumerate(train_dataloader), total=total_steps, initial=start_step)
185
+
186
+ for step, batch in progress_bar:
187
+ if step < start_step:
188
+ continue
189
+
190
+ # Process batch
191
+ inputs = {
192
+ k: v.view(-1, v.size(-1)).cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v
193
+ for k, v in batch.items()
194
+ }
195
+
196
+ if 'attention_mask' not in inputs:
197
+ inputs['attention_mask'] = torch.ones_like(inputs['input_ids'])
198
+
199
+ # Forward and backward passes
200
+ outputs = model(**inputs)
201
+ loss = outputs.loss / accumulation_steps
202
+ loss.backward()
203
+
204
+ running_loss += loss.item()
205
+
206
+ if (step + 1) % accumulation_steps == 0:
207
+ # Clip gradients
208
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
209
+
210
+ optimizer.step()
211
+ scheduler.step() # Update learning rate
212
+ optimizer.zero_grad()
213
+
214
+ # Calculate metrics for progress bar
215
+ current_lr = scheduler.get_last_lr()[0] # Get current learning rate
216
+ current_loss = running_loss
217
+ avg_loss = current_loss if step == 0 else (current_loss * 0.1 + prev_avg_loss * 0.9)
218
+ prev_avg_loss = avg_loss
219
+
220
+ progress_bar.set_postfix({
221
+ 'epoch': epoch + 1,
222
+ 'loss': f'{current_loss:.4f}',
223
+ 'avg_loss': f'{avg_loss:.4f}',
224
+ 'lr': f'{current_lr:.2e}',
225
+ 'step': f'{step}/{total_steps}'
226
+ })
227
+
228
+ running_loss = 0.0
229
+
230
+ # Save checkpoint
231
+ if step > 0 and step % save_interval == 0:
232
+ checkpoint_path = f"{checkpoint_dir}/checkpoint-{step}"
233
+ model.save_pretrained(checkpoint_path)
234
+
235
+ save_training_state(
236
+ checkpoint_path,
237
+ step,
238
+ epoch,
239
+ optimizer.state_dict(),
240
+ scheduler.state_dict()
241
+ )
242
+
243
+ # Remove old checkpoints
244
+ checkpoints = sorted([d for d in os.listdir(checkpoint_dir)
245
+ if d.startswith('checkpoint-')])
246
+ while len(checkpoints) > keep_last_checkpoints:
247
+ oldest_checkpoint = checkpoints.pop(0)
248
+ shutil.rmtree(os.path.join(checkpoint_dir, oldest_checkpoint))
249
+
250
+ # Memory cleanup
251
+ if step % 100 == 0:
252
+ gc.collect()
253
+ torch.cuda.empty_cache()
254
+
255
+ progress_bar.close()
256
+
257
+ # Save final model
258
+ final_path = "C:/Path/to/AI/Model/Final/Output"
259
+ model.save_pretrained(final_path)
260
+ tokenizer.save_pretrained(final_path)
261
+
262
+ save_training_state(
263
+ final_path,
264
+ total_steps,
265
+ epoch,
266
+ optimizer.state_dict(),
267
+ scheduler.state_dict()
268
+ )
269
+
270
+ if __name__ == "__main__":
271
+ main()