Update Galore_8bit_Version-2.py
Browse files- Galore_8bit_Version-2.py +271 -271
Galore_8bit_Version-2.py
CHANGED
@@ -1,271 +1,271 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from transformers import (
|
4 |
-
AutoModelForCausalLM,
|
5 |
-
AutoTokenizer,
|
6 |
-
DataCollatorForLanguageModeling,
|
7 |
-
BitsAndBytesConfig
|
8 |
-
)
|
9 |
-
from datasets import load_dataset
|
10 |
-
from tqdm import tqdm
|
11 |
-
from galore_torch import GaLoreAdamW8bit
|
12 |
-
import torch.amp as amp
|
13 |
-
from torch.utils.data import DataLoader
|
14 |
-
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
|
15 |
-
import gc
|
16 |
-
import os
|
17 |
-
import json
|
18 |
-
import shutil
|
19 |
-
import argparse
|
20 |
-
|
21 |
-
def save_training_state(checkpoint_dir, step, epoch, optimizer_state, scheduler_state):
|
22 |
-
"""Save training progress, optimizer and scheduler state"""
|
23 |
-
state = {
|
24 |
-
'step': step,
|
25 |
-
'epoch': epoch,
|
26 |
-
'optimizer_state': optimizer_state,
|
27 |
-
'scheduler_state': scheduler_state
|
28 |
-
}
|
29 |
-
with open(os.path.join(checkpoint_dir, 'training_state.json'), 'w') as f:
|
30 |
-
json.dump(state, f)
|
31 |
-
|
32 |
-
def load_training_state(checkpoint_dir):
|
33 |
-
"""Load training progress, optimizer and scheduler state"""
|
34 |
-
state_path = os.path.join(checkpoint_dir, 'training_state.json')
|
35 |
-
if os.path.exists(state_path):
|
36 |
-
with open(state_path, 'r') as f:
|
37 |
-
return json.load(f)
|
38 |
-
return None
|
39 |
-
|
40 |
-
def main():
|
41 |
-
# Set the number of epochs here
|
42 |
-
num_epochs = 1 # Change this value to your desired number of epochs
|
43 |
-
|
44 |
-
# Training configuration
|
45 |
-
save_interval = 100000000000000000 # Change this number to save checkpoint at specified step during training
|
46 |
-
checkpoint_dir = "C:/Path/to/AI/Model/Checkpoint"
|
47 |
-
keep_last_checkpoints = 3
|
48 |
-
|
49 |
-
# Initialize starting point
|
50 |
-
start_step = 0
|
51 |
-
start_epoch = 0
|
52 |
-
|
53 |
-
# Load the tokenizer and model
|
54 |
-
model_path = "C:/Path/to/Input/AI/Model"
|
55 |
-
os.makedirs(checkpoint_dir, exist_ok=True)
|
56 |
-
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
58 |
-
tokenizer.pad_token = tokenizer.eos_token
|
59 |
-
|
60 |
-
# Modified 8-bit configuration
|
61 |
-
bnb_config = BitsAndBytesConfig(
|
62 |
-
load_in_8bit=True,
|
63 |
-
bnb_4bit_compute_dtype=torch.float16
|
64 |
-
)
|
65 |
-
|
66 |
-
model = AutoModelForCausalLM.from_pretrained(
|
67 |
-
model_path,
|
68 |
-
quantization_config=bnb_config,
|
69 |
-
torch_dtype=torch.float16,
|
70 |
-
low_cpu_mem_usage=True,
|
71 |
-
device_map={"": 0}
|
72 |
-
)
|
73 |
-
|
74 |
-
# Dataset preparation
|
75 |
-
cache_dir = "C:/Path/to/Cache/Location"
|
76 |
-
os.makedirs(cache_dir, exist_ok=True)
|
77 |
-
|
78 |
-
dataset = load_dataset(
|
79 |
-
"json",
|
80 |
-
data_files="C:/Path/to/Training/Dataset.json",
|
81 |
-
split="train",
|
82 |
-
cache_dir=cache_dir
|
83 |
-
)
|
84 |
-
|
85 |
-
def preprocess(example):
|
86 |
-
formatted_text = (
|
87 |
-
f"<|im_start|>system\n\n"
|
88 |
-
f"{example['instruction']}<|im_end|>\n"
|
89 |
-
f"<|im_start|>user\n\n"
|
90 |
-
f"{example['input']}<|im_end|>\n"
|
91 |
-
f"<|im_start|>assistant\n\n"
|
92 |
-
f"{example['output']}<|im_end|>"
|
93 |
-
)
|
94 |
-
|
95 |
-
tokenized = tokenizer(
|
96 |
-
formatted_text,
|
97 |
-
truncation=True,
|
98 |
-
max_length=2048,
|
99 |
-
padding='max_length',
|
100 |
-
return_tensors=None
|
101 |
-
)
|
102 |
-
|
103 |
-
tokenized['labels'] = tokenized['input_ids'].copy()
|
104 |
-
return tokenized
|
105 |
-
|
106 |
-
tokenized_dataset = dataset.map(
|
107 |
-
preprocess,
|
108 |
-
batched=True,
|
109 |
-
batch_size=100,
|
110 |
-
num_proc=12,
|
111 |
-
remove_columns=dataset.column_names,
|
112 |
-
cache_file_name=os.path.join(cache_dir, "processed_dataset.arrow")
|
113 |
-
)
|
114 |
-
|
115 |
-
data_collator = DataCollatorForLanguageModeling(
|
116 |
-
tokenizer=tokenizer,
|
117 |
-
mlm=False
|
118 |
-
)
|
119 |
-
|
120 |
-
batch_size =
|
121 |
-
train_dataloader = DataLoader(
|
122 |
-
tokenized_dataset,
|
123 |
-
batch_size=batch_size,
|
124 |
-
shuffle=True,
|
125 |
-
num_workers=3,
|
126 |
-
pin_memory=True,
|
127 |
-
collate_fn=data_collator
|
128 |
-
)
|
129 |
-
|
130 |
-
# Optimizer setup
|
131 |
-
accumulation_steps = 20
|
132 |
-
galore_params = []
|
133 |
-
target_modules_list = ["attn", "mlp"]
|
134 |
-
|
135 |
-
for module_name, module in model.named_modules():
|
136 |
-
if not isinstance(module, nn.Linear):
|
137 |
-
continue
|
138 |
-
if not any(target_key in module_name for target_key in target_modules_list):
|
139 |
-
continue
|
140 |
-
module.weight.data = module.weight.data.to(torch.float16)
|
141 |
-
galore_params.append(module.weight)
|
142 |
-
|
143 |
-
id_galore_params = [id(p) for p in galore_params]
|
144 |
-
regular_params = [p for p in model.parameters() if id(p) not in id_galore_params]
|
145 |
-
|
146 |
-
for param in regular_params:
|
147 |
-
if param.requires_grad:
|
148 |
-
param.data = param.data.to(torch.float16)
|
149 |
-
|
150 |
-
param_groups = [
|
151 |
-
{'params': regular_params},
|
152 |
-
{
|
153 |
-
'params': galore_params,
|
154 |
-
'rank': 64,
|
155 |
-
'update_proj_gap': 200,
|
156 |
-
'scale': 0.25,
|
157 |
-
'proj_type': 'std'
|
158 |
-
}
|
159 |
-
]
|
160 |
-
|
161 |
-
optimizer = GaLoreAdamW8bit(param_groups, lr=3e-4)
|
162 |
-
|
163 |
-
# Calculate scheduler parameters
|
164 |
-
total_training_steps = len(train_dataloader)
|
165 |
-
first_cycle_steps = int(total_training_steps * 0.1) # First cycle is 10% of total steps
|
166 |
-
|
167 |
-
# Initialize the cosine scheduler with warm restarts
|
168 |
-
scheduler = CosineAnnealingWarmRestarts(
|
169 |
-
optimizer,
|
170 |
-
T_0=first_cycle_steps, # Length of first cycle
|
171 |
-
T_mult=2, # Each cycle is 1.5x longer than the last
|
172 |
-
eta_min=1e-6 # Minimum learning rate
|
173 |
-
)
|
174 |
-
|
175 |
-
# Training loop
|
176 |
-
model.train()
|
177 |
-
total_steps = len(train_dataloader)
|
178 |
-
prev_avg_loss = 0 # Initialize for moving average calculation
|
179 |
-
|
180 |
-
for epoch in range(start_epoch, num_epochs):
|
181 |
-
running_loss = 0.0
|
182 |
-
optimizer.zero_grad()
|
183 |
-
|
184 |
-
progress_bar = tqdm(enumerate(train_dataloader), total=total_steps, initial=start_step)
|
185 |
-
|
186 |
-
for step, batch in progress_bar:
|
187 |
-
if step < start_step:
|
188 |
-
continue
|
189 |
-
|
190 |
-
# Process batch
|
191 |
-
inputs = {
|
192 |
-
k: v.view(-1, v.size(-1)).cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v
|
193 |
-
for k, v in batch.items()
|
194 |
-
}
|
195 |
-
|
196 |
-
if 'attention_mask' not in inputs:
|
197 |
-
inputs['attention_mask'] = torch.ones_like(inputs['input_ids'])
|
198 |
-
|
199 |
-
# Forward and backward passes
|
200 |
-
outputs = model(**inputs)
|
201 |
-
loss = outputs.loss / accumulation_steps
|
202 |
-
loss.backward()
|
203 |
-
|
204 |
-
running_loss += loss.item()
|
205 |
-
|
206 |
-
if (step + 1) % accumulation_steps == 0:
|
207 |
-
# Clip gradients
|
208 |
-
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
|
209 |
-
|
210 |
-
optimizer.step()
|
211 |
-
scheduler.step() # Update learning rate
|
212 |
-
optimizer.zero_grad()
|
213 |
-
|
214 |
-
# Calculate metrics for progress bar
|
215 |
-
current_lr = scheduler.get_last_lr()[0] # Get current learning rate
|
216 |
-
current_loss = running_loss
|
217 |
-
avg_loss = current_loss if step == 0 else (current_loss * 0.1 + prev_avg_loss * 0.9)
|
218 |
-
prev_avg_loss = avg_loss
|
219 |
-
|
220 |
-
progress_bar.set_postfix({
|
221 |
-
'epoch': epoch + 1,
|
222 |
-
'loss': f'{current_loss:.4f}',
|
223 |
-
'avg_loss': f'{avg_loss:.4f}',
|
224 |
-
'lr': f'{current_lr:.2e}',
|
225 |
-
'step': f'{step}/{total_steps}'
|
226 |
-
})
|
227 |
-
|
228 |
-
running_loss = 0.0
|
229 |
-
|
230 |
-
# Save checkpoint
|
231 |
-
if step > 0 and step % save_interval == 0:
|
232 |
-
checkpoint_path = f"{checkpoint_dir}/checkpoint-{step}"
|
233 |
-
model.save_pretrained(checkpoint_path)
|
234 |
-
|
235 |
-
save_training_state(
|
236 |
-
checkpoint_path,
|
237 |
-
step,
|
238 |
-
epoch,
|
239 |
-
optimizer.state_dict(),
|
240 |
-
scheduler.state_dict()
|
241 |
-
)
|
242 |
-
|
243 |
-
# Remove old checkpoints
|
244 |
-
checkpoints = sorted([d for d in os.listdir(checkpoint_dir)
|
245 |
-
if d.startswith('checkpoint-')])
|
246 |
-
while len(checkpoints) > keep_last_checkpoints:
|
247 |
-
oldest_checkpoint = checkpoints.pop(0)
|
248 |
-
shutil.rmtree(os.path.join(checkpoint_dir, oldest_checkpoint))
|
249 |
-
|
250 |
-
# Memory cleanup
|
251 |
-
if step % 100 == 0:
|
252 |
-
gc.collect()
|
253 |
-
torch.cuda.empty_cache()
|
254 |
-
|
255 |
-
progress_bar.close()
|
256 |
-
|
257 |
-
# Save final model
|
258 |
-
final_path = "C:/Path/to/AI/Model/Final/Output"
|
259 |
-
model.save_pretrained(final_path)
|
260 |
-
tokenizer.save_pretrained(final_path)
|
261 |
-
|
262 |
-
save_training_state(
|
263 |
-
final_path,
|
264 |
-
total_steps,
|
265 |
-
epoch,
|
266 |
-
optimizer.state_dict(),
|
267 |
-
scheduler.state_dict()
|
268 |
-
)
|
269 |
-
|
270 |
-
if __name__ == "__main__":
|
271 |
-
main()
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import (
|
4 |
+
AutoModelForCausalLM,
|
5 |
+
AutoTokenizer,
|
6 |
+
DataCollatorForLanguageModeling,
|
7 |
+
BitsAndBytesConfig
|
8 |
+
)
|
9 |
+
from datasets import load_dataset
|
10 |
+
from tqdm import tqdm
|
11 |
+
from galore_torch import GaLoreAdamW8bit
|
12 |
+
import torch.amp as amp
|
13 |
+
from torch.utils.data import DataLoader
|
14 |
+
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
|
15 |
+
import gc
|
16 |
+
import os
|
17 |
+
import json
|
18 |
+
import shutil
|
19 |
+
import argparse
|
20 |
+
|
21 |
+
def save_training_state(checkpoint_dir, step, epoch, optimizer_state, scheduler_state):
|
22 |
+
"""Save training progress, optimizer and scheduler state"""
|
23 |
+
state = {
|
24 |
+
'step': step,
|
25 |
+
'epoch': epoch,
|
26 |
+
'optimizer_state': optimizer_state,
|
27 |
+
'scheduler_state': scheduler_state
|
28 |
+
}
|
29 |
+
with open(os.path.join(checkpoint_dir, 'training_state.json'), 'w') as f:
|
30 |
+
json.dump(state, f)
|
31 |
+
|
32 |
+
def load_training_state(checkpoint_dir):
|
33 |
+
"""Load training progress, optimizer and scheduler state"""
|
34 |
+
state_path = os.path.join(checkpoint_dir, 'training_state.json')
|
35 |
+
if os.path.exists(state_path):
|
36 |
+
with open(state_path, 'r') as f:
|
37 |
+
return json.load(f)
|
38 |
+
return None
|
39 |
+
|
40 |
+
def main():
|
41 |
+
# Set the number of epochs here
|
42 |
+
num_epochs = 1 # Change this value to your desired number of epochs
|
43 |
+
|
44 |
+
# Training configuration
|
45 |
+
save_interval = 100000000000000000 # Change this number to save checkpoint at specified step during training
|
46 |
+
checkpoint_dir = "C:/Path/to/AI/Model/Checkpoint"
|
47 |
+
keep_last_checkpoints = 3
|
48 |
+
|
49 |
+
# Initialize starting point
|
50 |
+
start_step = 0
|
51 |
+
start_epoch = 0
|
52 |
+
|
53 |
+
# Load the tokenizer and model
|
54 |
+
model_path = "C:/Path/to/Input/AI/Model"
|
55 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
56 |
+
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
58 |
+
tokenizer.pad_token = tokenizer.eos_token
|
59 |
+
|
60 |
+
# Modified 8-bit configuration
|
61 |
+
bnb_config = BitsAndBytesConfig(
|
62 |
+
load_in_8bit=True,
|
63 |
+
bnb_4bit_compute_dtype=torch.float16
|
64 |
+
)
|
65 |
+
|
66 |
+
model = AutoModelForCausalLM.from_pretrained(
|
67 |
+
model_path,
|
68 |
+
quantization_config=bnb_config,
|
69 |
+
torch_dtype=torch.float16,
|
70 |
+
low_cpu_mem_usage=True,
|
71 |
+
device_map={"": 0}
|
72 |
+
)
|
73 |
+
|
74 |
+
# Dataset preparation
|
75 |
+
cache_dir = "C:/Path/to/Cache/Location"
|
76 |
+
os.makedirs(cache_dir, exist_ok=True)
|
77 |
+
|
78 |
+
dataset = load_dataset(
|
79 |
+
"json",
|
80 |
+
data_files="C:/Path/to/Training/Dataset.json",
|
81 |
+
split="train",
|
82 |
+
cache_dir=cache_dir
|
83 |
+
)
|
84 |
+
|
85 |
+
def preprocess(example):
|
86 |
+
formatted_text = (
|
87 |
+
f"<|im_start|>system\n\n"
|
88 |
+
f"{example['instruction']}<|im_end|>\n"
|
89 |
+
f"<|im_start|>user\n\n"
|
90 |
+
f"{example['input']}<|im_end|>\n"
|
91 |
+
f"<|im_start|>assistant\n\n"
|
92 |
+
f"{example['output']}<|im_end|>"
|
93 |
+
)
|
94 |
+
|
95 |
+
tokenized = tokenizer(
|
96 |
+
formatted_text,
|
97 |
+
truncation=True,
|
98 |
+
max_length=2048,
|
99 |
+
padding='max_length',
|
100 |
+
return_tensors=None
|
101 |
+
)
|
102 |
+
|
103 |
+
tokenized['labels'] = tokenized['input_ids'].copy()
|
104 |
+
return tokenized
|
105 |
+
|
106 |
+
tokenized_dataset = dataset.map(
|
107 |
+
preprocess,
|
108 |
+
batched=True,
|
109 |
+
batch_size=100,
|
110 |
+
num_proc=12,
|
111 |
+
remove_columns=dataset.column_names,
|
112 |
+
cache_file_name=os.path.join(cache_dir, "processed_dataset.arrow")
|
113 |
+
)
|
114 |
+
|
115 |
+
data_collator = DataCollatorForLanguageModeling(
|
116 |
+
tokenizer=tokenizer,
|
117 |
+
mlm=False
|
118 |
+
)
|
119 |
+
|
120 |
+
batch_size = 2
|
121 |
+
train_dataloader = DataLoader(
|
122 |
+
tokenized_dataset,
|
123 |
+
batch_size=batch_size,
|
124 |
+
shuffle=True,
|
125 |
+
num_workers=3,
|
126 |
+
pin_memory=True,
|
127 |
+
collate_fn=data_collator
|
128 |
+
)
|
129 |
+
|
130 |
+
# Optimizer setup
|
131 |
+
accumulation_steps = 20
|
132 |
+
galore_params = []
|
133 |
+
target_modules_list = ["attn", "mlp"]
|
134 |
+
|
135 |
+
for module_name, module in model.named_modules():
|
136 |
+
if not isinstance(module, nn.Linear):
|
137 |
+
continue
|
138 |
+
if not any(target_key in module_name for target_key in target_modules_list):
|
139 |
+
continue
|
140 |
+
module.weight.data = module.weight.data.to(torch.float16)
|
141 |
+
galore_params.append(module.weight)
|
142 |
+
|
143 |
+
id_galore_params = [id(p) for p in galore_params]
|
144 |
+
regular_params = [p for p in model.parameters() if id(p) not in id_galore_params]
|
145 |
+
|
146 |
+
for param in regular_params:
|
147 |
+
if param.requires_grad:
|
148 |
+
param.data = param.data.to(torch.float16)
|
149 |
+
|
150 |
+
param_groups = [
|
151 |
+
{'params': regular_params},
|
152 |
+
{
|
153 |
+
'params': galore_params,
|
154 |
+
'rank': 64,
|
155 |
+
'update_proj_gap': 200,
|
156 |
+
'scale': 0.25,
|
157 |
+
'proj_type': 'std'
|
158 |
+
}
|
159 |
+
]
|
160 |
+
|
161 |
+
optimizer = GaLoreAdamW8bit(param_groups, lr=3e-4)
|
162 |
+
|
163 |
+
# Calculate scheduler parameters
|
164 |
+
total_training_steps = len(train_dataloader)
|
165 |
+
first_cycle_steps = int(total_training_steps * 0.1) # First cycle is 10% of total steps
|
166 |
+
|
167 |
+
# Initialize the cosine scheduler with warm restarts
|
168 |
+
scheduler = CosineAnnealingWarmRestarts(
|
169 |
+
optimizer,
|
170 |
+
T_0=first_cycle_steps, # Length of first cycle
|
171 |
+
T_mult=2, # Each cycle is 1.5x longer than the last
|
172 |
+
eta_min=1e-6 # Minimum learning rate
|
173 |
+
)
|
174 |
+
|
175 |
+
# Training loop
|
176 |
+
model.train()
|
177 |
+
total_steps = len(train_dataloader)
|
178 |
+
prev_avg_loss = 0 # Initialize for moving average calculation
|
179 |
+
|
180 |
+
for epoch in range(start_epoch, num_epochs):
|
181 |
+
running_loss = 0.0
|
182 |
+
optimizer.zero_grad()
|
183 |
+
|
184 |
+
progress_bar = tqdm(enumerate(train_dataloader), total=total_steps, initial=start_step)
|
185 |
+
|
186 |
+
for step, batch in progress_bar:
|
187 |
+
if step < start_step:
|
188 |
+
continue
|
189 |
+
|
190 |
+
# Process batch
|
191 |
+
inputs = {
|
192 |
+
k: v.view(-1, v.size(-1)).cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v
|
193 |
+
for k, v in batch.items()
|
194 |
+
}
|
195 |
+
|
196 |
+
if 'attention_mask' not in inputs:
|
197 |
+
inputs['attention_mask'] = torch.ones_like(inputs['input_ids'])
|
198 |
+
|
199 |
+
# Forward and backward passes
|
200 |
+
outputs = model(**inputs)
|
201 |
+
loss = outputs.loss / accumulation_steps
|
202 |
+
loss.backward()
|
203 |
+
|
204 |
+
running_loss += loss.item()
|
205 |
+
|
206 |
+
if (step + 1) % accumulation_steps == 0:
|
207 |
+
# Clip gradients
|
208 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
|
209 |
+
|
210 |
+
optimizer.step()
|
211 |
+
scheduler.step() # Update learning rate
|
212 |
+
optimizer.zero_grad()
|
213 |
+
|
214 |
+
# Calculate metrics for progress bar
|
215 |
+
current_lr = scheduler.get_last_lr()[0] # Get current learning rate
|
216 |
+
current_loss = running_loss
|
217 |
+
avg_loss = current_loss if step == 0 else (current_loss * 0.1 + prev_avg_loss * 0.9)
|
218 |
+
prev_avg_loss = avg_loss
|
219 |
+
|
220 |
+
progress_bar.set_postfix({
|
221 |
+
'epoch': epoch + 1,
|
222 |
+
'loss': f'{current_loss:.4f}',
|
223 |
+
'avg_loss': f'{avg_loss:.4f}',
|
224 |
+
'lr': f'{current_lr:.2e}',
|
225 |
+
'step': f'{step}/{total_steps}'
|
226 |
+
})
|
227 |
+
|
228 |
+
running_loss = 0.0
|
229 |
+
|
230 |
+
# Save checkpoint
|
231 |
+
if step > 0 and step % save_interval == 0:
|
232 |
+
checkpoint_path = f"{checkpoint_dir}/checkpoint-{step}"
|
233 |
+
model.save_pretrained(checkpoint_path)
|
234 |
+
|
235 |
+
save_training_state(
|
236 |
+
checkpoint_path,
|
237 |
+
step,
|
238 |
+
epoch,
|
239 |
+
optimizer.state_dict(),
|
240 |
+
scheduler.state_dict()
|
241 |
+
)
|
242 |
+
|
243 |
+
# Remove old checkpoints
|
244 |
+
checkpoints = sorted([d for d in os.listdir(checkpoint_dir)
|
245 |
+
if d.startswith('checkpoint-')])
|
246 |
+
while len(checkpoints) > keep_last_checkpoints:
|
247 |
+
oldest_checkpoint = checkpoints.pop(0)
|
248 |
+
shutil.rmtree(os.path.join(checkpoint_dir, oldest_checkpoint))
|
249 |
+
|
250 |
+
# Memory cleanup
|
251 |
+
if step % 100 == 0:
|
252 |
+
gc.collect()
|
253 |
+
torch.cuda.empty_cache()
|
254 |
+
|
255 |
+
progress_bar.close()
|
256 |
+
|
257 |
+
# Save final model
|
258 |
+
final_path = "C:/Path/to/AI/Model/Final/Output"
|
259 |
+
model.save_pretrained(final_path)
|
260 |
+
tokenizer.save_pretrained(final_path)
|
261 |
+
|
262 |
+
save_training_state(
|
263 |
+
final_path,
|
264 |
+
total_steps,
|
265 |
+
epoch,
|
266 |
+
optimizer.state_dict(),
|
267 |
+
scheduler.state_dict()
|
268 |
+
)
|
269 |
+
|
270 |
+
if __name__ == "__main__":
|
271 |
+
main()
|