File size: 8,097 Bytes
fd45515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """
@misc{singh2024aya,
title={Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning},
author={Shivalika Singh and Freddie Vargus and Daniel Dsouza and Börje F. Karlsson and
Abinaya Mahendiran and Wei-Yin Ko and Herumb Shandilya and Jay Patel and Deividas
Mataciunas and Laura OMahony and Mike Zhang and Ramith Hettiarachchi and Joseph
Wilson and Marina Machado and Luisa Souza Moura and Dominik Krzemiński and Hakimeh
Fadaei and Irem Ergün and Ifeoma Okoh and Aisha Alaagib and Oshan Mudannayake and
Zaid Alyafeai and Vu Minh Chien and Sebastian Ruder and Surya Guthikonda and Emad A.
Alghamdi and Sebastian Gehrmann and Niklas Muennighoff and Max Bartolo and Julia Kreutzer
and Ahmet Üstün and Marzieh Fadaee and Sara Hooker},
year={2024},
eprint={2402.06619},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DATASETNAME = "aya_collection_translated"
_DESCRIPTION = """
The Aya Collection is a massive multilingual collection consisting of 513 million instances of prompts and
completions covering a wide range of tasks. This dataset covers the translated prompts of the Aya Collection.
"""
_HOMEPAGE = "https://huggingface.co/datasets/CohereForAI/aya_collection_language_split"
_LANGUAGES = ["ceb", "tha", "mya", "zsm", "jav", "ind", "vie", "sun", "ace", "bjn", "khm", "lao", "min"]
_LICENSE = Licenses.APACHE_2_0.value
_LOCAL = False
_URLS = {
"ceb": "https://huggingface.co/datasets/CohereForAI/aya_collection_language_split/resolve/main/cebuano",
"tha": "https://huggingface.co/datasets/CohereForAI/aya_collection_language_split/resolve/main/thai",
"mya": "https://huggingface.co/datasets/CohereForAI/aya_collection_language_split/resolve/main/burmese",
"zsm": "https://huggingface.co/datasets/CohereForAI/aya_collection_language_split/resolve/main/malayalam",
"jav": "https://huggingface.co/datasets/CohereForAI/aya_collection_language_split/resolve/main/javanese",
"ind": "https://huggingface.co/datasets/CohereForAI/aya_collection_language_split/resolve/main/indonesian",
"vie": "https://huggingface.co/datasets/CohereForAI/aya_collection_language_split/resolve/main/vietnamese",
"sun": "https://huggingface.co/datasets/CohereForAI/aya_collection_language_split/resolve/main/sundanese",
"ace": "https://huggingface.co/datasets/CohereForAI/aya_collection_language_split/resolve/main/achinese",
"bjn": "https://huggingface.co/datasets/CohereForAI/aya_collection_language_split/resolve/main/banjar",
"khm": "https://huggingface.co/datasets/CohereForAI/aya_collection_language_split/resolve/main/central_khmer",
"lao": "https://huggingface.co/datasets/CohereForAI/aya_collection_language_split/resolve/main/lao",
"min": "https://huggingface.co/datasets/CohereForAI/aya_collection_language_split/resolve/main/minangkabau",
}
_SUPPORTED_TASKS = [Tasks.INSTRUCTION_TUNING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class AyaCollectionTranslatedDataset(datasets.GeneratorBasedBuilder):
"""
The Aya Collection is a massive multilingual collection consisting of 513 million instances of prompts and
completions covering a wide range of tasks. This dataset covers the translated prompts of the Aya Collection.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_{LANG}_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} {LANG} source schema",
schema="source",
subset_id=f"{_DATASETNAME}_{LANG}",
)
for LANG in _LANGUAGES
] + [
SEACrowdConfig(
name=f"{_DATASETNAME}_{LANG}_seacrowd_t2t",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} {LANG} SEACrowd schema",
schema="seacrowd_t2t",
subset_id=f"{_DATASETNAME}_{LANG}",
)
for LANG in _LANGUAGES
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_ind_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("int64"),
"inputs": datasets.Value("string"),
"targets": datasets.Value("string"),
"dataset_name": datasets.Value("string"),
"sub_dataset_name": datasets.Value("string"),
"task_type": datasets.Value("string"),
"template_id": datasets.Value("int64"),
"language": datasets.Value("string"),
"script": datasets.Value("string"),
"split": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
language = self.config.name.split("_")[3]
if language in _LANGUAGES:
data_train_paths = []
for version in [0, 1, 2]:
for all in [1, 2, 3]:
if version >= all:
continue
else:
try:
data_train_path = Path(dl_manager.download_and_extract(f"{_URLS[language]}/train-0000{version}-of-0000{all}.parquet?download=true"))
data_train_paths.append(data_train_path)
except Exception:
continue
data_validation_path = Path(dl_manager.download_and_extract(f"{_URLS[language]}/validation-00000-of-00001.parquet?download=true"))
data_test_path = Path(dl_manager.download_and_extract(f"{_URLS[language]}/test-00000-of-00001.parquet?download=true"))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_train_paths,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_test_path,
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_validation_path,
"split": "dev",
},
),
]
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
if isinstance(filepath, Path):
dfs = [pd.read_parquet(filepath)]
else:
dfs = [pd.read_parquet(path) for path in filepath]
df = pd.concat(dfs, ignore_index=True)
for index, row in df.iterrows():
if self.config.schema == "source":
example = row.to_dict()
elif self.config.schema == "seacrowd_t2t":
example = {
"id": str(index),
"text_1": row["inputs"],
"text_2": row["targets"],
"text_1_name": "inputs",
"text_2_name": "targets",
}
yield index, example
|