holylovenia
commited on
Upload cc100.py with huggingface_hub
Browse files
cc100.py
CHANGED
@@ -26,24 +26,24 @@ corpus.
|
|
26 |
|
27 |
This contains the Indonesian (ind), the Javanese (jav), and the Sundanese (sun) subset.
|
28 |
|
29 |
-
[
|
30 |
"""
|
31 |
|
32 |
-
from posixpath import split
|
33 |
from typing import Dict, List, Tuple
|
34 |
|
35 |
import datasets
|
36 |
|
37 |
-
from
|
38 |
-
from
|
39 |
-
from
|
40 |
-
|
41 |
|
42 |
_DATASETNAME = "cc100"
|
43 |
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
44 |
-
_UNIFIED_VIEW_NAME =
|
45 |
|
46 |
-
|
|
|
47 |
_LOCAL = False
|
48 |
|
49 |
_CITATION = """\
|
@@ -135,9 +135,17 @@ _HOMEPAGE = "https://data.statmt.org/cc-100/"
|
|
135 |
_LICENSE = "MIT"
|
136 |
|
137 |
_LANGUAGES_MAP = {
|
138 |
-
"ind": "id",
|
139 |
-
"jav": "jv",
|
140 |
-
"sun": "su",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
}
|
142 |
|
143 |
_URLS = {
|
@@ -146,19 +154,28 @@ _URLS = {
|
|
146 |
|
147 |
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
|
148 |
|
|
|
|
|
149 |
_SOURCE_VERSION = "2018.12.01"
|
150 |
|
151 |
-
|
|
|
152 |
|
153 |
-
def
|
154 |
-
"""Construct
|
155 |
-
if schema != "source" and schema != "
|
156 |
raise ValueError(f"Invalid schema: {schema}")
|
157 |
|
158 |
if lang == "":
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
elif lang in _LANGUAGES:
|
161 |
-
return
|
162 |
name=f"cc100_{lang}_{schema}",
|
163 |
version=datasets.Version(version),
|
164 |
description=f"CC100 with {schema} schema for {lang} language",
|
@@ -171,14 +188,15 @@ def nusantara_config_constructor(lang, schema, version):
|
|
171 |
|
172 |
class CC100(datasets.GeneratorBasedBuilder):
|
173 |
"""Monolingual Datasets from Web Crawl Data."""
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
182 |
|
183 |
def _info(self) -> datasets.DatasetInfo:
|
184 |
if self.config.schema == "source":
|
@@ -188,7 +206,7 @@ class CC100(datasets.GeneratorBasedBuilder):
|
|
188 |
"text": datasets.Value("string"),
|
189 |
}
|
190 |
)
|
191 |
-
elif self.config.schema == "
|
192 |
features = schemas.self_supervised_pretraining.features
|
193 |
|
194 |
return datasets.DatasetInfo(
|
@@ -201,14 +219,13 @@ class CC100(datasets.GeneratorBasedBuilder):
|
|
201 |
|
202 |
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
203 |
"""Returns SplitGenerators."""
|
204 |
-
|
205 |
split_name = self.config.name.split("_")
|
206 |
-
if
|
207 |
-
|
|
|
208 |
else:
|
209 |
-
|
210 |
-
|
211 |
-
path = dl_manager.download_and_extract(url)
|
212 |
|
213 |
return [
|
214 |
datasets.SplitGenerator(
|
@@ -234,7 +251,7 @@ class CC100(datasets.GeneratorBasedBuilder):
|
|
234 |
"text": row.strip(),
|
235 |
},
|
236 |
)
|
237 |
-
elif self.config.schema == "
|
238 |
for counter, row in enumerate(f):
|
239 |
if row.strip() != "":
|
240 |
yield (
|
@@ -243,4 +260,4 @@ class CC100(datasets.GeneratorBasedBuilder):
|
|
243 |
"id": str(counter),
|
244 |
"text": row.strip(),
|
245 |
},
|
246 |
-
)
|
|
|
26 |
|
27 |
This contains the Indonesian (ind), the Javanese (jav), and the Sundanese (sun) subset.
|
28 |
|
29 |
+
[seacrowd_schema_name] = ssp
|
30 |
"""
|
31 |
|
|
|
32 |
from typing import Dict, List, Tuple
|
33 |
|
34 |
import datasets
|
35 |
|
36 |
+
from seacrowd.utils import schemas
|
37 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
38 |
+
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
|
39 |
+
DEFAULT_SOURCE_VIEW_NAME, Tasks, TASK_TO_SCHEMA)
|
40 |
|
41 |
_DATASETNAME = "cc100"
|
42 |
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
43 |
+
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
|
44 |
|
45 |
+
# We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
46 |
+
_LANGUAGES = ["ind", "jav", "sun", "mya", "mya_zaw", "lao", "khm", "tgl", "vie", "tha", "zlm"]
|
47 |
_LOCAL = False
|
48 |
|
49 |
_CITATION = """\
|
|
|
135 |
_LICENSE = "MIT"
|
136 |
|
137 |
_LANGUAGES_MAP = {
|
138 |
+
"ind": "id", # Indonesian
|
139 |
+
"jav": "jv", # Javanese
|
140 |
+
"sun": "su", # Sundanese
|
141 |
+
"mya": "my", # Burmese
|
142 |
+
"mya_zaw": "my_zaw", # Burmese (Zawgyi)
|
143 |
+
"lao": "lo", # Lao
|
144 |
+
"khm": "km", # Central Khmer, Khmer
|
145 |
+
"tgl": "tl", # Tagalog
|
146 |
+
"vie": "vi", # Vietnamese
|
147 |
+
"tha": "th", # Thai
|
148 |
+
"zlm": "ms", # Malay
|
149 |
}
|
150 |
|
151 |
_URLS = {
|
|
|
154 |
|
155 |
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
|
156 |
|
157 |
+
_SEACROWD_SCHEMA_NAME = TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()
|
158 |
+
|
159 |
_SOURCE_VERSION = "2018.12.01"
|
160 |
|
161 |
+
_SEACROWD_VERSION = "2024.06.20"
|
162 |
+
|
163 |
|
164 |
+
def seacrowd_config_constructor(lang, schema, version):
|
165 |
+
"""Construct SEACrowdConfig with cc100_{lang}_{schema} as the name format."""
|
166 |
+
if schema != "source" and schema != f"seacrowd_{_SEACROWD_SCHEMA_NAME}":
|
167 |
raise ValueError(f"Invalid schema: {schema}")
|
168 |
|
169 |
if lang == "":
|
170 |
+
return SEACrowdConfig(
|
171 |
+
name=f"cc100_{schema}",
|
172 |
+
version=datasets.Version(version),
|
173 |
+
description=f"CC100 with {schema} schema for all languages",
|
174 |
+
schema=schema,
|
175 |
+
subset_id="cc100",
|
176 |
+
)
|
177 |
elif lang in _LANGUAGES:
|
178 |
+
return SEACrowdConfig(
|
179 |
name=f"cc100_{lang}_{schema}",
|
180 |
version=datasets.Version(version),
|
181 |
description=f"CC100 with {schema} schema for {lang} language",
|
|
|
188 |
|
189 |
class CC100(datasets.GeneratorBasedBuilder):
|
190 |
"""Monolingual Datasets from Web Crawl Data."""
|
191 |
+
|
192 |
+
BUILDER_CONFIGS = (
|
193 |
+
[seacrowd_config_constructor(lang, "source", _SOURCE_VERSION) for lang in _LANGUAGES_MAP]
|
194 |
+
+ [seacrowd_config_constructor(lang, f"seacrowd_{_SEACROWD_SCHEMA_NAME}", _SEACROWD_VERSION) for lang in _LANGUAGES_MAP]
|
195 |
+
+ [
|
196 |
+
seacrowd_config_constructor("", "source", _SOURCE_VERSION),
|
197 |
+
seacrowd_config_constructor("", f"seacrowd_{_SEACROWD_SCHEMA_NAME}", _SOURCE_VERSION),
|
198 |
+
]
|
199 |
+
)
|
200 |
|
201 |
def _info(self) -> datasets.DatasetInfo:
|
202 |
if self.config.schema == "source":
|
|
|
206 |
"text": datasets.Value("string"),
|
207 |
}
|
208 |
)
|
209 |
+
elif self.config.schema == f"seacrowd_{_SEACROWD_SCHEMA_NAME}":
|
210 |
features = schemas.self_supervised_pretraining.features
|
211 |
|
212 |
return datasets.DatasetInfo(
|
|
|
219 |
|
220 |
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
221 |
"""Returns SplitGenerators."""
|
|
|
222 |
split_name = self.config.name.split("_")
|
223 |
+
if self.config.name == "cc100_source" or self.config.name == f"cc100_seacrowd_{_SEACROWD_SCHEMA_NAME}":
|
224 |
+
# Load all languages
|
225 |
+
path = dl_manager.download_and_extract([_URLS["train"].format(lang=_LANGUAGES_MAP[lang]) for lang in _LANGUAGES_MAP])
|
226 |
else:
|
227 |
+
url = _URLS["train"].format(lang=_LANGUAGES_MAP[split_name[1]])
|
228 |
+
path = dl_manager.download_and_extract(url)
|
|
|
229 |
|
230 |
return [
|
231 |
datasets.SplitGenerator(
|
|
|
251 |
"text": row.strip(),
|
252 |
},
|
253 |
)
|
254 |
+
elif self.config.schema == f"seacrowd_{_SEACROWD_SCHEMA_NAME}":
|
255 |
for counter, row in enumerate(f):
|
256 |
if row.strip() != "":
|
257 |
yield (
|
|
|
260 |
"id": str(counter),
|
261 |
"text": row.strip(),
|
262 |
},
|
263 |
+
)
|