cc_aligned_sent / cc_aligned_sent.py
holylovenia's picture
Upload cc_aligned_sent.py with huggingface_hub
93f9a52 verified
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from datasets.download.download_manager import DownloadManager
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = r"""
@inproceedings{chaudhary-etal-2019-low,
title = "Low-Resource Corpus Filtering Using Multilingual Sentence Embeddings",
author = "Chaudhary, Vishrav and
Tang, Yuqing and
Guzm{\'a}n, Francisco and
Schwenk, Holger and
Koehn, Philipp",
editor = "Bojar, Ond{\v{r}}ej and
Chatterjee, Rajen and
Federmann, Christian and
Fishel, Mark and
Graham, Yvette and
Haddow, Barry and
Huck, Matthias and
Yepes, Antonio Jimeno and
Koehn, Philipp and
Martins, Andr{\'e} and
Monz, Christof and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Post, Matt and
Turchi, Marco and
Verspoor, Karin",
booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5435",
doi = "10.18653/v1/W19-5435",
pages = "261--266",
}
"""
_LOCAL = False
_LANGUAGES = ["ind", "jav", "sun", "tha", "vie", "zlm", "lao", "khm", "mya", "ceb"]
_DATASETNAME = "cc_aligned_sent"
_DESCRIPTION = """\
This dataset contains the sentence pairs extracted from CC-Aligned document
pairs using similarity scores of LASER embeddings (minimum similarity 1.04,
sorted based on decreasing similarity score). It misses some languages not
covered by LASER.
"""
_HOMEPAGE = "https://www2.statmt.org/cc-aligned/"
_LICENSE = Licenses.UNKNOWN.value
_URL = "https://data.statmt.org/cc-aligned/sentence-aligned/"
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
_SUBSETS = ["id_ID", "jv_ID", "su_ID", "th_TH", "vi_VN", "ms_MY", "lo_LA", "km_KH", "my_MM", "cx_PH"]
class CCAlignedSentencesDataset(datasets.GeneratorBasedBuilder):
"""CC Aligned Sentences dataset by Chaudhary et al., (2019)"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "t2t"
# Add configurations for loading a dataset per language.
dataset_names = sorted([f"{_DATASETNAME}_{subset}" for subset in _SUBSETS])
BUILDER_CONFIGS = []
for name in dataset_names:
source_config = SEACrowdConfig(
name=f"{name}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=name,
)
BUILDER_CONFIGS.append(source_config)
seacrowd_config = SEACrowdConfig(
name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=name,
)
BUILDER_CONFIGS.append(seacrowd_config)
# Choose first language as default
first_subset = sorted(_SUBSETS)[0]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{first_subset}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"Source_Sentence": datasets.Value("string"),
"Target_Sentence": datasets.Value("string"),
"LASER_similarity": datasets.Value("float64"),
}
)
if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.text_to_text.features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
"""Return SplitGenerators."""
# Define some functions for parsing config and URL names
def _split_at_n(text: str, n: int) -> Tuple[str, str]:
"""Split text on the n-th instance"""
return ("_".join(text.split("_")[:n]), "_".join(text.split("_")[n:]))
# Get URL. For cx_PH, the source and target languages are reversed
_, subset = _split_at_n(_split_at_n(self.config.name, 5)[0], 3)
(source_lang, target_lang) = (subset, "en_XX") if subset == "cx_PH" else ("en_XX", subset)
url = _URL + f"{source_lang}-{target_lang}.tsv.xz"
filepath = dl_manager.download_and_extract(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": filepath,
"source_lang": source_lang,
"target_lang": target_lang,
},
)
]
def _generate_examples(self, filepath: Path, source_lang: str, target_lang: str) -> Tuple[int, Dict]:
"""Yield examples as (key, example) tuples"""
with open(filepath, encoding="utf-8") as file:
for idx, row in enumerate(file):
text_1, text_2, score = row.strip().split("\t")
if self.config.schema == "source":
example = {
"id": idx,
"Source_Sentence": text_1,
"Target_Sentence": text_2,
"LASER_similarity": float(score),
}
if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
example = {
"id": idx,
"text_1": text_1,
"text_2": text_2,
"text_1_name": source_lang,
"text_2_name": target_lang,
}
yield idx, example