holylovenia
commited on
Upload clir_matrix.py with huggingface_hub
Browse files- clir_matrix.py +234 -0
clir_matrix.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from itertools import permutations
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Dict, List, Tuple
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
import pandas as pd
|
22 |
+
|
23 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
24 |
+
from seacrowd.utils.constants import Licenses
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@inproceedings{sun-duh-2020-clirmatrix,
|
28 |
+
title = "{CLIRM}atrix: A massively large collection of bilingual and multilingual datasets for Cross-Lingual Information Retrieval",
|
29 |
+
author = "Sun, Shuo and
|
30 |
+
Duh, Kevin",
|
31 |
+
editor = "Webber, Bonnie and
|
32 |
+
Cohn, Trevor and
|
33 |
+
He, Yulan and
|
34 |
+
Liu, Yang",
|
35 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
|
36 |
+
month = nov,
|
37 |
+
year = "2020",
|
38 |
+
address = "Online",
|
39 |
+
publisher = "Association for Computational Linguistics",
|
40 |
+
url = "https://aclanthology.org/2020.emnlp-main.340",
|
41 |
+
doi = "10.18653/v1/2020.emnlp-main.340",
|
42 |
+
pages = "4160--4170",
|
43 |
+
}
|
44 |
+
"""
|
45 |
+
|
46 |
+
_DATASETNAME = "clir_matrix"
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
A massively large collection of bilingual and multilingual datasets for Cross-Lingual Information Retrieval extracted automatically from Wikipedia.
|
50 |
+
CLIRMatrix (Cross-Lingual Information Retrieval Matrix) comprises:
|
51 |
+
(1) BI-139, a bilingual dataset of queries in one language matched with relevant documents in another language for 139x138=19,182 language pairs, and
|
52 |
+
(2) MULTI-8, a multilingual dataset of queries and documents jointly aligned in 8 different languages.
|
53 |
+
|
54 |
+
Only (1) BI-139 has languages covered in SEACROWD.
|
55 |
+
"""
|
56 |
+
|
57 |
+
_HOMEPAGE = "https://github.com/ssun32/CLIRMatrix"
|
58 |
+
|
59 |
+
_LANGUAGES = ["tgl", "ilo", "min", "jav", "sun", "ceb", "vie", "tha"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
60 |
+
|
61 |
+
_LICENSE = Licenses.UNKNOWN.value
|
62 |
+
|
63 |
+
_LOCAL = False
|
64 |
+
|
65 |
+
_CLIR_LANG = {
|
66 |
+
"tgl": "tl",
|
67 |
+
"jav": "jv",
|
68 |
+
"sun": "su",
|
69 |
+
"vie": "vi",
|
70 |
+
"tha": "th",
|
71 |
+
"ilo": "ilo",
|
72 |
+
"min": "min",
|
73 |
+
"ceb": "ceb",
|
74 |
+
}
|
75 |
+
_URLS = {
|
76 |
+
ds: {
|
77 |
+
split: {(lque, ldoc): (f"https://www.cs.jhu.edu/~shuosun/clirmatrix/data/BI-139/{ds}/{_CLIR_LANG[lque]}/" f"{_CLIR_LANG[lque]}.{_CLIR_LANG[ldoc]}.{split}{'.base' if ds == 'base' else ''}.jl.gz") for lque, ldoc in permutations(_LANGUAGES, 2)}
|
78 |
+
for split in ["train", "dev", "test1", "test2"]
|
79 |
+
}
|
80 |
+
for ds in ["base", "full"]
|
81 |
+
} | {"docs": {ldoc: f"https://www.cs.jhu.edu/~shuosun/clirmatrix/data/DOCS/{_CLIR_LANG[ldoc]}.tsv.gz" for ldoc in _LANGUAGES}}
|
82 |
+
|
83 |
+
_SUPPORTED_TASKS = []
|
84 |
+
|
85 |
+
_SOURCE_VERSION = "1.0.0"
|
86 |
+
|
87 |
+
_SEACROWD_VERSION = "2024.06.20"
|
88 |
+
|
89 |
+
|
90 |
+
class CLIRMatrixDataset(datasets.GeneratorBasedBuilder):
|
91 |
+
"""Cross-Lingual Information Retrieval dataset of 49 million unique queries and 34 billion triplets."""
|
92 |
+
|
93 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
94 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
95 |
+
|
96 |
+
BUILDER_CONFIGS = [
|
97 |
+
*[
|
98 |
+
SEACrowdConfig(
|
99 |
+
name=f"{_DATASETNAME}{subset}_source", # refers to the `base` split in the original paper.
|
100 |
+
version=datasets.Version(_SOURCE_VERSION),
|
101 |
+
description=f"{_DATASETNAME} source schema",
|
102 |
+
schema="source",
|
103 |
+
subset_id=f"{_DATASETNAME}{subset}",
|
104 |
+
)
|
105 |
+
for subset in [f"{'_' if lque else ''}{lque}{'_' if ldoc else ''}{ldoc}" for lque, ldoc in [("", ""), *permutations(_LANGUAGES, 2)]]
|
106 |
+
],
|
107 |
+
*[
|
108 |
+
SEACrowdConfig(
|
109 |
+
name=f"{_DATASETNAME}{subset}_full_source", # refers to the `full` split in the original paper.
|
110 |
+
version=datasets.Version(_SOURCE_VERSION),
|
111 |
+
description=f"{_DATASETNAME} full subset source schema",
|
112 |
+
schema="source",
|
113 |
+
subset_id=f"{_DATASETNAME}{subset}_full",
|
114 |
+
)
|
115 |
+
for subset in [f"{'_' if lque else ''}{lque}{'_' if ldoc else ''}{ldoc}" for lque, ldoc in [("", ""), *permutations(_LANGUAGES, 2)]]
|
116 |
+
],
|
117 |
+
# source-only dataloader
|
118 |
+
# SEACrowdConfig(
|
119 |
+
# name=f"{_DATASETNAME}_seacrowd_pairs",
|
120 |
+
# version=SEACROWD_VERSION,
|
121 |
+
# description=f"{_DATASETNAME} SEACrowd schema",
|
122 |
+
# schema="seacrowd_pairs",
|
123 |
+
# subset_id=f"{_DATASETNAME}",
|
124 |
+
# ),
|
125 |
+
# SEACrowdConfig(
|
126 |
+
# name=f"{_DATASETNAME}_full_seacrowd_pairs",
|
127 |
+
# version=SEACROWD_VERSION,
|
128 |
+
# description=f"{_DATASETNAME} full subset SEACrowd schema",
|
129 |
+
# schema="seacrowd_pairs",
|
130 |
+
# subset_id=f"{_DATASETNAME}_full",
|
131 |
+
# ),
|
132 |
+
]
|
133 |
+
|
134 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
135 |
+
|
136 |
+
def _info(self) -> datasets.DatasetInfo:
|
137 |
+
|
138 |
+
if self.config.schema == "source":
|
139 |
+
features = datasets.Features(
|
140 |
+
{
|
141 |
+
"src_id": datasets.Value("string"),
|
142 |
+
"src_query": datasets.Value("string"),
|
143 |
+
"tgt_results": [
|
144 |
+
{
|
145 |
+
"doc_id": datasets.Value("string"),
|
146 |
+
"score": datasets.Value("int32"),
|
147 |
+
"doc_text": datasets.Value("string"),
|
148 |
+
}
|
149 |
+
],
|
150 |
+
"lang_query": datasets.Value("string"),
|
151 |
+
"lang_doc": datasets.Value("string"),
|
152 |
+
}
|
153 |
+
)
|
154 |
+
|
155 |
+
# elif self.config.schema == "seacrowd_[seacrowdschema_name]":
|
156 |
+
# source_only, skipping this.
|
157 |
+
else:
|
158 |
+
raise NotImplementedError()
|
159 |
+
|
160 |
+
return datasets.DatasetInfo(
|
161 |
+
description=_DESCRIPTION,
|
162 |
+
features=features,
|
163 |
+
homepage=_HOMEPAGE,
|
164 |
+
license=_LICENSE,
|
165 |
+
citation=_CITATION,
|
166 |
+
)
|
167 |
+
|
168 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
169 |
+
"""Returns SplitGenerators."""
|
170 |
+
|
171 |
+
subset_id = self.config.subset_id.split("_")
|
172 |
+
|
173 |
+
urls = _URLS["full" if subset_id[-1] == "full" else "base"]
|
174 |
+
urls_doc = _URLS["docs"]
|
175 |
+
|
176 |
+
# filter subset direction
|
177 |
+
if len(subset_id) > 3:
|
178 |
+
lque, ldoc = subset_id[2:4]
|
179 |
+
urls = {split: {(lque, ldoc): v[(lque, ldoc)]} for split, v in urls.items()}
|
180 |
+
urls_doc = {ldoc: urls_doc[ldoc]}
|
181 |
+
|
182 |
+
data_paths = dl_manager.download_and_extract(urls)
|
183 |
+
doc_paths = dl_manager.download_and_extract(urls_doc)
|
184 |
+
|
185 |
+
return [
|
186 |
+
datasets.SplitGenerator(
|
187 |
+
name=datasets.Split.TRAIN,
|
188 |
+
gen_kwargs={"filepath": data_paths["train"], "doc_paths": doc_paths},
|
189 |
+
),
|
190 |
+
datasets.SplitGenerator(
|
191 |
+
name=datasets.Split.TEST,
|
192 |
+
gen_kwargs={"filepath": data_paths["test1"], "doc_paths": doc_paths},
|
193 |
+
),
|
194 |
+
datasets.SplitGenerator(
|
195 |
+
name="test2", # just supplementary test sets for users to use in whatever way they want # just supplementary test sets for users to use in whatever way they want
|
196 |
+
gen_kwargs={"filepath": data_paths["test2"], "doc_paths": doc_paths},
|
197 |
+
),
|
198 |
+
datasets.SplitGenerator(
|
199 |
+
name=datasets.Split.VALIDATION,
|
200 |
+
gen_kwargs={"filepath": data_paths["dev"], "doc_paths": doc_paths},
|
201 |
+
),
|
202 |
+
]
|
203 |
+
|
204 |
+
def _generate_examples(self, filepath: Dict[Tuple, Path], doc_paths: Dict[str, Path]) -> Tuple[int, Dict]:
|
205 |
+
"""Yields examples as (key, example) tuples."""
|
206 |
+
|
207 |
+
docs_id2txt = {}
|
208 |
+
for ldoc, p in doc_paths.items():
|
209 |
+
docs_id2txt[ldoc] = pd.read_csv(p, sep="\t", dtype=str, header=None).set_index(0).iloc[:, 0]
|
210 |
+
|
211 |
+
if self.config.schema == "source":
|
212 |
+
for (lque, ldoc), fp in filepath.items():
|
213 |
+
df = pd.read_json(fp, orient="records", lines=True)
|
214 |
+
not_found = set()
|
215 |
+
for idx, row in df.iterrows():
|
216 |
+
ret = row.to_dict()
|
217 |
+
for doc_id, score in ret["tgt_results"]:
|
218 |
+
if doc_id not in docs_id2txt[ldoc]:
|
219 |
+
not_found.add(doc_id)
|
220 |
+
ret["lang_query"] = lque
|
221 |
+
ret["lang_doc"] = ldoc
|
222 |
+
ret["tgt_results"] = [
|
223 |
+
{
|
224 |
+
"doc_id": doc_id,
|
225 |
+
"score": score,
|
226 |
+
"doc_text": docs_id2txt[ldoc].get(doc_id, ""),
|
227 |
+
# many doc_id discrepancy, i.e. not found in the tab-separated document files, in particular for Sundanese (sun);
|
228 |
+
}
|
229 |
+
for doc_id, score in ret["tgt_results"]
|
230 |
+
]
|
231 |
+
yield f"{lque}_{ldoc}_{idx}", ret
|
232 |
+
|
233 |
+
# source-only dataloader, skipping seacrowd schema.
|
234 |
+
# elif self.config.schema == "seacrowd_[seacrowd_schema_name]":
|