|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """ |
|
@inproceedings{azhar2019multi, |
|
title={Multi-label Aspect Categorization with Convolutional Neural Networks and Extreme Gradient Boosting}, |
|
author={A. N. Azhar, M. L. Khodra, and A. P. Sutiono} |
|
booktitle={Proceedings of the 2019 International Conference on Electrical Engineering and Informatics (ICEEI)}, |
|
pages={35--40}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "hoasa" |
|
|
|
_DESCRIPTION = """ |
|
HoASA: An aspect-based sentiment analysis dataset consisting of hotel reviews collected from the hotel aggregator platform, AiryRooms. |
|
The dataset covers ten different aspects of hotel quality. Similar to the CASA dataset, each review is labeled with a single sentiment label for each aspect. |
|
There are four possible sentiment classes for each sentiment label: |
|
positive, negative, neutral, and positive-negative. |
|
The positivenegative label is given to a review that contains multiple sentiments of the same aspect but for different objects (e.g., cleanliness of bed and toilet). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/IndoNLP/indonlu" |
|
|
|
_LICENSE = "CC-BY-SA 4.0" |
|
|
|
_URLS = { |
|
"train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/hoasa_absa-airy/train_preprocess.csv", |
|
"validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/hoasa_absa-airy/valid_preprocess.csv", |
|
"test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/hoasa_absa-airy/test_preprocess.csv", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class HoASA(datasets.GeneratorBasedBuilder): |
|
"""HoASA is an aspect based sentiment analysis dataset""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="hoasa_source", |
|
version=SOURCE_VERSION, |
|
description="HoASA source schema", |
|
schema="source", |
|
subset_id="hoasa", |
|
), |
|
SEACrowdConfig( |
|
name="hoasa_seacrowd_text_multi", |
|
version=SEACROWD_VERSION, |
|
description="HoASA Nusantara schema", |
|
schema="seacrowd_text_multi", |
|
subset_id="hoasa", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "hoasa_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"index": datasets.Value("int64"), |
|
"review": datasets.Value("string"), |
|
"ac": datasets.Value("string"), |
|
"air_panas": datasets.Value("string"), |
|
"bau": datasets.Value("string"), |
|
"general": datasets.Value("string"), |
|
"kebersihan": datasets.Value("string"), |
|
"linen": datasets.Value("string"), |
|
"service": datasets.Value("string"), |
|
"sunrise_meal": datasets.Value("string"), |
|
"tv": datasets.Value("string"), |
|
"wifi": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_text_multi": |
|
features = schemas.text_multi_features(["pos", "neut", "neg", "neg_pos"]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
train_csv_path = Path(dl_manager.download_and_extract(_URLS["train"])) |
|
validation_csv_path = Path(dl_manager.download_and_extract(_URLS["validation"])) |
|
test_csv_path = Path(dl_manager.download_and_extract(_URLS["test"])) |
|
|
|
data_dir = { |
|
"train": train_csv_path, |
|
"validation": validation_csv_path, |
|
"test": test_csv_path, |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["validation"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
df = pd.read_csv(filepath, sep=",", header="infer").reset_index() |
|
if self.config.schema == "source": |
|
for row in df.itertuples(): |
|
entry = { |
|
"index": row.index, |
|
"review": row.review, |
|
"ac": row.ac, |
|
"air_panas": row.air_panas, |
|
"bau": row.bau, |
|
"general": row.general, |
|
"kebersihan": row.kebersihan, |
|
"linen": row.linen, |
|
"service": row.service, |
|
"sunrise_meal": row.sunrise_meal, |
|
"tv": row.tv, |
|
"wifi": row.wifi, |
|
} |
|
yield row.index, entry |
|
|
|
elif self.config.schema == "seacrowd_text_multi": |
|
for row in df.itertuples(): |
|
entry = { |
|
"id": str(row.index), |
|
"text": row.review, |
|
"labels": [label for label in row[3:]], |
|
} |
|
yield row.index, entry |
|
|