# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Tuple import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """ @inproceedings{palen-michel-lignos-2023-lr, author = {Palen-Michel, Chester and Lignos, Constantine}, title = {LR - Sum: Summarization for Less-Resourced Languages}, booktitle = {Findings of the Association for Computational Linguistics: ACL 2023}, year = {2023}, publisher = {Association for Computational Linguistics}, address = {Toronto, Canada}, doi = {10.18653/v1/2023.findings-acl.427}, pages = {6829--6844}, } """ _LOCAL = False _LANGUAGES = ["ind", "khm", "lao", "mya", "tha", "vie"] _DATASETNAME = "lr_sum" _DESCRIPTION = """ LR-Sum is a news abstractive summarization dataset focused on low-resource languages. It contains human-written summaries for 39 languages and the data is based on the Multilingual Open Text corpus (ultimately derived from the Voice of America website). """ _HOMEPAGE = "https://huggingface.co/datasets/bltlab/lr-sum" _LICENSE = Licenses.CC_BY_4_0.value _URL = "https://huggingface.co/datasets/bltlab/lr-sum" _SUPPORTED_TASKS = [Tasks.SUMMARIZATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class LRSumDataset(datasets.GeneratorBasedBuilder): """Dataset of article-summary pairs for different low-resource languages.""" # Config to load individual datasets per language BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_{lang}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema for {lang} language", schema="source", subset_id=f"{_DATASETNAME}_{lang}", ) for lang in _LANGUAGES ] + [ SEACrowdConfig( name=f"{_DATASETNAME}_{lang}_seacrowd_t2t", version=datasets.Version(_SEACROWD_VERSION), description=f"{_DATASETNAME} SEACrowd schema for {lang} language", schema="seacrowd_t2t", subset_id=f"{_DATASETNAME}_{lang}", ) for lang in _LANGUAGES ] # Config to load all datasets BUILDER_CONFIGS.extend( [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema for all languages", schema="source", subset_id=_DATASETNAME, ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_t2t", version=datasets.Version(_SEACROWD_VERSION), description=f"{_DATASETNAME} SEACrowd schema for all languages", schema="seacrowd_t2t", subset_id=_DATASETNAME, ), ] ) DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "url": datasets.Value("string"), "title": datasets.Value("string"), "summary": datasets.Value("string"), "text": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_t2t": features = schemas.text2text_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" # dl_manager not used since dataloader uses HF 'load_dataset' return [ datasets.SplitGenerator(name=split, gen_kwargs={"split": split._name}) for split in ( datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST, ) ] def _load_hf_data_from_remote(self, lang: str, split: str) -> datasets.DatasetDict: """Load dataset from HuggingFace.""" hf_remote_ref = "/".join(_URL.split("/")[-2:]) return datasets.load_dataset(hf_remote_ref, lang, split=split) def _generate_examples(self, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" lr_sum_datasets = [] lang = self.config.subset_id.split("_")[-1] if lang in _LANGUAGES: lr_sum_datasets.append(self._load_hf_data_from_remote(lang, split)) else: for lang in _LANGUAGES: lr_sum_datasets.append(self._load_hf_data_from_remote(lang, split)) index = 0 for lang_subset in lr_sum_datasets: for row in lang_subset: if self.config.schema == "source": example = row elif self.config.schema == "seacrowd_t2t": example = { "id": str(index), "text_1": row["text"], "text_2": row["summary"], "text_1_name": "document", "text_2_name": "summary", } yield index, example index += 1