|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from datasets.download.download_manager import DownloadManager |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@inproceedings{hlaing-2020-myanmar, |
|
author={Hlaing, Zar Zar and Thu, Ye Kyaw and Wai, Myat Myo Nwe and Supnithi, Thepchai and Netisopakul, Ponrudee}, |
|
booktitle={2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)}, |
|
title={Myanmar POS Resource Extension Effects on Automatic Tagging Methods}, |
|
year={2020}, |
|
pages={1-6}, |
|
doi={10.1109/iSAI-NLP51646.2020.9376835}} |
|
@inproceedings{htike2017comparison, |
|
title={Comparison of six POS tagging methods on 10K sentences Myanmar language (Burmese) POS tagged corpus}, |
|
author={Htike, Khin War War and Thu, Ye Kyaw and Zuping Zhang, Win Pa Pa and Sagisaka, Yoshinori and Iwahashi, Naoto}, |
|
booktitle={Proceedings of the CICLING}, |
|
year={2017} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["mya"] |
|
_DATASETNAME = "mypos" |
|
_DESCRIPTION = """\ |
|
This version of the myPOS corpus extends the original myPOS corpus from |
|
11,000 to 43,196 Burmese sentences by adding data from the ASEAN MT NECTEC |
|
corpus and two developed parallel corpora (Myanmar-Chinese and |
|
Myanmar-Korean). The original 11,000 sentences were collected from Wikipedia |
|
and includes various topics such as economics, history, news, politics and |
|
philosophy. The format used in the corpus is word/POS-tag, and the pipe |
|
delimiter " |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ye-kyaw-thu/myPOS" |
|
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value |
|
_URL = "https://raw.githubusercontent.com/ye-kyaw-thu/myPOS/master/corpus-ver-3.0/corpus/mypos-ver.3.0.txt" |
|
|
|
_SUPPORTED_TASKS = [Tasks.POS_TAGGING] |
|
_SOURCE_VERSION = "3.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class MyPOSDataset(datasets.GeneratorBasedBuilder): |
|
"""MyPOS dataset from https://github.com/ye-kyaw-thu/myPOS""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "seq_label" |
|
|
|
LABEL_CLASSES = ["abb", "adj", "adv", "conj", "fw", "int", "n", "num", "part", "ppm", "pron", "punc", "sb", "tn", "v"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
features = schemas.seq_label_features(self.LABEL_CLASSES) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
data_file = Path(dl_manager.download_and_extract(_URL)) |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file})] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yield examples as (key, example) tuples""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
lines = f.readlines() |
|
|
|
for idx, line in enumerate(lines): |
|
|
|
line = line.rstrip("\n") |
|
tags = self._tokenize(line) |
|
|
|
split_token = [tag.split("/") for tag in tags if tag] |
|
tokens = [split[0] for split in split_token] |
|
labels = [split[1] for split in split_token] |
|
example = {"id": str(idx), "tokens": tokens, "labels": labels} |
|
|
|
yield idx, example |
|
|
|
def _tokenize(self, sentence: str) -> List[str]: |
|
"""Tokenize Myanmar text |
|
|
|
From the README: https://github.com/ye-kyaw-thu/myPOS/tree/master#word-segmentation |
|
Important things to point out: |
|
- Words composed of single or multiple syllables are usually not separated by white space. |
|
- There are no clear rules for using spaces in Myanmar language. |
|
- The authors used six rules for word segmentation |
|
""" |
|
final_tokens = [] |
|
|
|
|
|
init_tokens = sentence.split(" ") |
|
|
|
for token in init_tokens: |
|
final_tokens.extend(token.split("|")) |
|
|
|
return final_tokens |
|
|