File size: 6,007 Bytes
df70105 874acd3 df70105 874acd3 df70105 874acd3 df70105 874acd3 df70105 874acd3 df70105 874acd3 df70105 874acd3 df70105 874acd3 df70105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
from seacrowd.utils import schemas
import csv
_CITATION = """\
@article{nurlaila2018classification,
title={CLASSIFICATION OF CUSTOMERS EMOTION USING NA{\"I}VE BAYES CLASSIFIER (Case Study: Natasha Skin Care)},
author={Nurlaila, Afifah and Wiranto, Wiranto and Saptono, Ristu},
journal={ITSMART: Jurnal Teknologi dan Informasi},
volume={6},
number={2},
pages={92--97},
year={2018}
}
"""
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_DATASETNAME = "sentiment_nathasa_review"
_DESCRIPTION = """\
Customer Review (Natasha Skincare) is a customers emotion dataset, with amounted to 19,253 samples with the division for each class is 804 joy, 43 surprise, 154 anger, 61 fear, 287 sad, 167 disgust, and 17736 no-emotions.
"""
_HOMEPAGE = "https://jurnal.uns.ac.id/itsmart/article/viewFile/17328/15082"
_LICENSE = "Unknown"
_URLS = {
_DATASETNAME: "https://drive.google.com/uc?id=1D1pHX7CxrI-eIl2bAvIp1bWQeucyUGw0",
}
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class SentimentNathasaReview(datasets.GeneratorBasedBuilder):
"""Customer Review (Natasha Skincare) is a customers emotion dataset, with amounted to 19,253 samples with the division for each class is 804 joy, 43 surprise, 154 anger, 61 fear, 287 sad, 167 disgust, and 17736 no-emotions."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="sentiment_nathasa_review_source",
version=datasets.Version(_SOURCE_VERSION),
description="sentiment_nathasa_review source schema",
schema="source",
subset_id="sentiment_nathasa_review",
),
SEACrowdConfig(
name="sentiment_nathasa_review_seacrowd_text",
version=datasets.Version(_SEACROWD_VERSION),
description="sentiment_nathasa_review Nusantara schema",
schema="seacrowd_text",
subset_id="sentiment_nathasa_review",
),
]
DEFAULT_CONFIG_NAME = "sentiment_nathasa_review_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"usr": datasets.Value("string"),
"text": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_text":
features = schemas.text_features(['NOEMOTION', 'SURPRISE', 'SAD', 'JOY', 'FEAR', 'DISGUST', 'ANGER'])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
data_dir = Path(dl_manager.download(_URLS[_DATASETNAME]))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir,
"split": "test",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
if self.config.schema == "source":
with open(filepath, "r") as F:
csvreader = csv.reader(F)
for row in csvreader:
try:
row_data = eval(row[0].replace(';',','))[0]
except:
continue
if split == "train" and row_data[3] == "DATA LATIH":
ex = {
"id": row_data[0],
"usr": row_data[1],
"text": row_data[4],
"label": row_data[2],
}
yield row_data[0], ex
elif split == "test" and row_data[3] == "DATA UJI":
ex = {
"id": row_data[0],
"usr": row_data[1],
"text": row_data[4],
"label": row_data[2],
}
yield row_data[0], ex
elif self.config.schema == "seacrowd_text":
with open(filepath, "r") as F:
csvreader = csv.reader(F)
for row in csvreader:
try:
row_data = eval(row[0].replace(';',','))[0]
except:
continue
if split == "train" and row_data[3] == "DATA LATIH":
ex = {
"id": row_data[0],
"text": row_data[4],
"label": row_data[2],
}
yield row_data[0], ex
elif split == "test" and row_data[3] == "DATA UJI":
ex = {
"id": row_data[0],
"text": row_data[4],
"label": row_data[2],
}
yield row_data[0], ex
else:
raise ValueError(f"Invalid config: {self.config.name}")
|