|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@inproceedings{, |
|
author = {Nguyen, Luan Thanh and Van Nguyen, Kiet and Nguyen, Ngan Luu-Thuy}, |
|
title = {Constructive and Toxic Speech Detection for Open-domain Social Media Comments in Vietnamese}, |
|
booktitle = {Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices}, |
|
year = {2021}, |
|
publisher = {Springer International Publishing}, |
|
address = {Kuala Lumpur, Malaysia}, |
|
pages = {572--583}, |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["vie"] |
|
_DATASETNAME = "uit_victsd" |
|
_DESCRIPTION = """ |
|
The UIT-ViCTSD (Vietnamese Constructive and Toxic Speech Detection dataset) is a compilation of 10,000 human-annotated |
|
comments intended for constructive and toxic comments detection. The dataset spans 10 domains, reflecting the diverse topics |
|
and expressions found in social media interactions among Vietnamese users. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/tarudesu/ViCTSD" |
|
_LICENSE = Licenses.UNKNOWN.value |
|
_URL = "https://huggingface.co/datasets/tarudesu/ViCTSD" |
|
|
|
|
|
_SUPPORTED_TASKS = [Tasks.INTENT_CLASSIFICATION, Tasks.ABUSIVE_LANGUAGE_PREDICTION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class UiTViCTSDDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
Dataset of Vietnamese social media comments annotated |
|
for constructiveness and toxicity. |
|
""" |
|
|
|
SUBSETS = ["constructiveness", "toxicity"] |
|
CLASS_LABELS = [0, 1] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema for {subset} subset", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_{subset}", |
|
) |
|
for subset in SUBSETS |
|
] + [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_seacrowd_text", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema for {subset} subset", |
|
schema="seacrowd_text", |
|
subset_id=f"{_DATASETNAME}_{subset}", |
|
) |
|
for subset in SUBSETS |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_constructiveness_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"Unnamed: 0": datasets.Value("int64"), |
|
"Comment": datasets.Value("string"), |
|
"Constructiveness": datasets.ClassLabel(names=self.CLASS_LABELS), |
|
"Toxicity": datasets.ClassLabel(names=self.CLASS_LABELS), |
|
"Title": datasets.Value("string"), |
|
"Topic": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(label_names=self.CLASS_LABELS) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
|
|
return [datasets.SplitGenerator(name=split, gen_kwargs={"split": split._name}) for split in (datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST)] |
|
|
|
def _load_hf_data_from_remote(self, split: str) -> datasets.DatasetDict: |
|
"""Load dataset from HuggingFace.""" |
|
HF_REMOTE_REF = "/".join(_URL.split("/")[-2:]) |
|
_hf_dataset_source = datasets.load_dataset(HF_REMOTE_REF, split=split) |
|
return _hf_dataset_source |
|
|
|
def _generate_examples(self, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
data = self._load_hf_data_from_remote(split=split) |
|
for index, row in enumerate(data): |
|
if self.config.schema == "source": |
|
example = row |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
if "constructiveness" in self.config.name: |
|
label = row["Constructiveness"] |
|
elif "toxicity" in self.config.name: |
|
label = row["Toxicity"] |
|
example = {"id": str(index), "text": row["Comment"], "label": label} |
|
yield index, example |
|
|