# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Tuple import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """ @inproceedings{, author = {Nguyen, Luan Thanh and Van Nguyen, Kiet and Nguyen, Ngan Luu-Thuy}, title = {Constructive and Toxic Speech Detection for Open-domain Social Media Comments in Vietnamese}, booktitle = {Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices}, year = {2021}, publisher = {Springer International Publishing}, address = {Kuala Lumpur, Malaysia}, pages = {572--583}, } """ _LOCAL = False _LANGUAGES = ["vie"] _DATASETNAME = "uit_victsd" _DESCRIPTION = """ The UIT-ViCTSD (Vietnamese Constructive and Toxic Speech Detection dataset) is a compilation of 10,000 human-annotated comments intended for constructive and toxic comments detection. The dataset spans 10 domains, reflecting the diverse topics and expressions found in social media interactions among Vietnamese users. """ _HOMEPAGE = "https://github.com/tarudesu/ViCTSD" _LICENSE = Licenses.UNKNOWN.value _URL = "https://huggingface.co/datasets/tarudesu/ViCTSD" _SUPPORTED_TASKS = [Tasks.INTENT_CLASSIFICATION, Tasks.ABUSIVE_LANGUAGE_PREDICTION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class UiTViCTSDDataset(datasets.GeneratorBasedBuilder): """ Dataset of Vietnamese social media comments annotated for constructiveness and toxicity. """ SUBSETS = ["constructiveness", "toxicity"] CLASS_LABELS = [0, 1] BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_{subset}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema for {subset} subset", schema="source", subset_id=f"{_DATASETNAME}_{subset}", ) for subset in SUBSETS ] + [ SEACrowdConfig( name=f"{_DATASETNAME}_{subset}_seacrowd_text", version=datasets.Version(_SEACROWD_VERSION), description=f"{_DATASETNAME} SEACrowd schema for {subset} subset", schema="seacrowd_text", subset_id=f"{_DATASETNAME}_{subset}", ) for subset in SUBSETS ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_constructiveness_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "Unnamed: 0": datasets.Value("int64"), # Column name missing in original dataset "Comment": datasets.Value("string"), "Constructiveness": datasets.ClassLabel(names=self.CLASS_LABELS), "Toxicity": datasets.ClassLabel(names=self.CLASS_LABELS), "Title": datasets.Value("string"), "Topic": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_text": features = schemas.text_features(label_names=self.CLASS_LABELS) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: # dl_manager not used since dataloader uses HF 'load_dataset' return [datasets.SplitGenerator(name=split, gen_kwargs={"split": split._name}) for split in (datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST)] def _load_hf_data_from_remote(self, split: str) -> datasets.DatasetDict: """Load dataset from HuggingFace.""" HF_REMOTE_REF = "/".join(_URL.split("/")[-2:]) _hf_dataset_source = datasets.load_dataset(HF_REMOTE_REF, split=split) return _hf_dataset_source def _generate_examples(self, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" data = self._load_hf_data_from_remote(split=split) for index, row in enumerate(data): if self.config.schema == "source": example = row elif self.config.schema == "seacrowd_text": if "constructiveness" in self.config.name: label = row["Constructiveness"] elif "toxicity" in self.config.name: label = row["Toxicity"] example = {"id": str(index), "text": row["Comment"], "label": label} yield index, example