Datasets:

Languages:
Vietnamese
ArXiv:
License:
File size: 5,592 Bytes
9ec4ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# coding=utf-8
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@InProceedings{nguyen2022viheathqa,
  author="Nguyen, Nhung Thi-Hong
  and Ha, Phuong Phan-Dieu
  and Nguyen, Luan Thanh
  and Van Nguyen, Kiet
  and Nguyen, Ngan Luu-Thuy",
  title="SPBERTQA: A Two-Stage Question Answering System Based on Sentence Transformers for Medical Texts",
  booktitle="Knowledge Science, Engineering and Management",
  year="2022",
  publisher="Springer International Publishing",
  address="Cham",
  pages="371--382",
  isbn="978-3-031-10986-7"
}
"""
_DATASETNAME = "vihealthqa"
_DESCRIPTION = """\
Vietnamese Visual Question Answering (ViVQA) consist of 10328 images and 15000 question-answer
pairs in Vietnamese for evaluating Vietnamese VQA models. This dataset is built based on 10328 randomly
selected images from MS COCO dataset. The question-answer pairs were based on the COCO-QA dataset that
was automatically translated from English to Vietnamese.
"""
_HOMEPAGE = "https://huggingface.co/datasets/tarudesu/ViHealthQA"
_LANGUAGES = ["vie"]
_LICENSE = Licenses.UNKNOWN.value
_PAPER_URL = "https://link.springer.com/chapter/10.1007/978-3-031-10986-7_30"
_LOCAL = False
_URLS = {
    "vihealthqa": {
        "train": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/train.csv",
        "val": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/val.csv",
        "test": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/test.csv",
    }
}
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class ViHealthQADataset(datasets.GeneratorBasedBuilder):
    '''
This is a SeaCrowed dataloader for dataset Vietnamese Visual Question Answering (ViVQA), which consists of 10328 images and 15000 question-answer
pairs in Vietnamese for evaluating Vietnamese VQA models.
    '''
    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=f"{_DATASETNAME}",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_qa",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema="seacrowd_qa",
            subset_id=f"{_DATASETNAME}",
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answer": datasets.Value("string"),
                    "link": datasets.Value("string")
                }
            )
        elif self.config.schema == "seacrowd_qa":
            features = schemas.qa_features
            features["meta"] = {"link": datasets.Value("string")}
        else:
            raise ValueError(f"No schema matched for {self.config.schema}")

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        urls = _URLS["vihealthqa"]
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_dir["val"],
                    "split": "val",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir["test"],
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        raw_examples = pd.read_csv(filepath)

        for eid, exam in raw_examples.iterrows():
            assert len(exam) == 4
            exam_id, exam_quest, exam_answer, exam_link = exam

            if self.config.schema == "source":
                yield eid, {"id": str(exam_id), "question": exam_quest, "answer": exam_answer, "link": exam_link}

            elif self.config.schema == "seacrowd_qa":
                yield eid, {
                    "id": str(eid),
                    "question_id": exam_id,
                    "document_id": str(eid),
                    "question": exam_quest,
                    "type": None,
                    "choices": [],
                    "context": exam_link,
                    "answer": [exam_answer],
                    "meta": {
                        "link": exam_link,
                    },
                }