|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
from datasets import NamedSplit |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks, Licenses |
|
|
|
_DATASETNAME = "wikiann" |
|
|
|
_LANGUAGES = ["ind", "jav", "min", "sun", "ace", "zlm", "map-bms", "mya", "tgl", "tha", "vie", "khm"] |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{pan-etal-2017-cross, |
|
title = "Cross-lingual Name Tagging and Linking for 282 Languages", |
|
author = "Pan, Xiaoman and |
|
Zhang, Boliang and |
|
May, Jonathan and |
|
Nothman, Joel and |
|
Knight, Kevin and |
|
Ji, Heng", |
|
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = jul, |
|
year = "2017", |
|
address = "Vancouver, Canada", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/P17-1178", |
|
doi = "10.18653/v1/P17-1178", |
|
pages = "1946--1958", |
|
abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework |
|
for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able |
|
to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to |
|
an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of |
|
new KB mining methods: generating {``}silver-standard{''} annotations by |
|
transferring annotations from English to other languages through cross-lingual links and KB properties, |
|
refining annotations through self-training and topic selection, |
|
deriving language-specific morphology features from anchor links, and mining word translation pairs from |
|
cross-lingual links. Both name tagging and linking results for 282 languages are promising |
|
on Wikipedia data and on-Wikipedia data.", |
|
} |
|
@inproceedings{rahimi-etal-2019-massively, |
|
title = "Massively Multilingual Transfer for {NER}", |
|
author = "Rahimi, Afshin and |
|
Li, Yuan and |
|
Cohn, Trevor", |
|
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
month = jul, |
|
year = "2019", |
|
address = "Florence, Italy", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/P19-1015", |
|
pages = "151--164", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The wikiann dataset contains NER tags with labels from O (0), B-PER (1), I-PER (2), B-ORG (3), I-ORG (4), B-LOC (5), I-LOC (6). The Indonesian subset is used. |
|
WikiANN (sometimes called PAN-X) is a multilingual named entity recognition dataset consisting of Wikipedia articles |
|
annotated with LOC (location), PER (person), and ORG (organisation) |
|
tags in the IOB2 format. This version corresponds to the balanced train, dev, and test splits of |
|
Rahimi et al. (2019), and uses the following subsets from the original WikiANN corpus |
|
|
|
Language WikiAnn ISO 639-3 |
|
Indonesian id ind |
|
Javanese jv jav |
|
Minangkabau min min |
|
Sundanese su sun |
|
Acehnese ace ace |
|
Malay ms zlm |
|
Banyumasan map-bms map-bms |
|
Myanmar my mya |
|
Tagalog tl tgl |
|
Thailand th tha |
|
Vietnam vi vie |
|
Khmer km khm |
|
|
|
|
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/afshinrahimi/mmner" |
|
|
|
_LICENSE = Licenses.APACHE_2_0.value |
|
|
|
_URL = "https://s3.amazonaws.com/datasets.huggingface.co/wikiann/1.1.0/panx_dataset.zip" |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.1.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
def seacrowd_config_constructor(lang, schema, version): |
|
if lang == "": |
|
raise ValueError(f"Invalid lang {lang}") |
|
|
|
if schema != "source" and schema != "seacrowd_seq_label": |
|
raise ValueError(f"Invalid schema: {schema}") |
|
|
|
return SEACrowdConfig( |
|
name="wikiann_{lang}_{schema}".format(lang=lang, schema=schema), |
|
version=datasets.Version(version), |
|
description="wikiann with {schema} schema for {lang} language".format(lang=lang, schema=schema), |
|
schema=schema, |
|
subset_id="wikiann", |
|
) |
|
|
|
|
|
LANGUAGES_MAP = {"ind": "indonesian", "jav": "javanese", "min": "minangkabau", "sun": "sundanese", "ace": "acehnese", "zlm": "malay", "map_bms": "banyumasan", "mya": "myanmar", "tgl": "tagalog", "tha": "thailand", "vie": "vietnam", "khm": "khmer"} |
|
LANG_CODES = {"ind": "id", "jav": "jv", "min": "min", "sun": "su", "ace": "ace", "zlm": "ms", "map_bms": "map-bms", "mya": "my", "tgl": "tl", "tha": "th","vie": "vi","khm": "km"} |
|
|
|
|
|
class WikiAnnDataset(datasets.GeneratorBasedBuilder): |
|
"""wikiann is an NER tagging dataset consisting of Wikipedia articles annotated with LOC, PER, and ORG tags |
|
for multiple Indonesian language. If the language is not specified, it loads the Indonesian subset.""" |
|
|
|
label_classes = ["B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "O"] |
|
|
|
BUILDER_CONFIGS = [seacrowd_config_constructor(lang, "source", _SOURCE_VERSION) for lang in LANGUAGES_MAP] + [seacrowd_config_constructor(lang, "seacrowd_seq_label", _SEACROWD_VERSION) for lang in LANGUAGES_MAP] |
|
|
|
DEFAULT_CONFIG_NAME = "wikiann_ind_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "ner_tag": [datasets.Value("string")]}) |
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label_features(self.label_classes) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def get_lang(self, name): |
|
return name.removesuffix("_source").removesuffix("_seacrowd_seq_label").removeprefix("wikiann_") |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
path = Path(dl_manager.download_and_extract(_URL)) |
|
lang = LANG_CODES[self.get_lang(self.config.name)] |
|
wikiann_dl_dir = path / f"{lang}.tar.gz" |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"split": "dev", "filepath": dl_manager.iter_archive(wikiann_dl_dir)}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"split": "test", "filepath": dl_manager.iter_archive(wikiann_dl_dir)}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"split": "train", "filepath": dl_manager.iter_archive(wikiann_dl_dir)}, |
|
), |
|
datasets.SplitGenerator( |
|
name=NamedSplit("extra"), |
|
gen_kwargs={"split": "extra", "filepath": dl_manager.iter_archive(wikiann_dl_dir)}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split): |
|
"""Based on https://github.com/huggingface/datasets/blob/main/datasets/wikiann/wikiann.py""" |
|
fps = filepath |
|
tokens = [] |
|
ner_tags = [] |
|
langs = [] |
|
guid_index = 0 |
|
for k, file in fps: |
|
if k == split: |
|
for line in file: |
|
line = line.decode("utf-8") |
|
if line == "" or line == "\n": |
|
if tokens: |
|
if self.config.schema == "source": |
|
yield guid_index, {"index": str(guid_index), "tokens": tokens, "ner_tag": ner_tags} |
|
elif self.config.schema == "seacrowd_seq_label": |
|
yield guid_index, {"id": str(guid_index), "tokens": tokens, "labels": ner_tags} |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
guid_index += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
langs = [] |
|
else: |
|
|
|
splits = line.split("\t") |
|
|
|
langs.append(splits[0].split(":")[0]) |
|
tokens.append(":".join(splits[0].split(":")[1:])) |
|
if len(splits) > 1: |
|
ner_tags.append(splits[-1].replace("\n", "")) |
|
else: |
|
|
|
ner_tags.append("O") |
|
|