|
import json |
|
import os |
|
from PIL import Image |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@SIA86{huggingface:dataset, |
|
title = {WaterFlowCountersRecognition dataset}, |
|
author={SIA86}, |
|
year={2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is designed to detect digital data from water flow counters photos. |
|
""" |
|
_HOMEPAGE = "https://github.com/SIA86/WaterFlowRecognition" |
|
|
|
_REGION_NAME = ['value_a', 'value_b', 'serial'] |
|
|
|
_REGION_ROTETION = ['0', '90', '180', '270'] |
|
|
|
|
|
|
|
|
|
class WaterFlowCounterConfig(datasets.BuilderConfig): |
|
"""Builder Config for WaterFlowCounter""" |
|
|
|
def __init__(self, data_url, metadata_url, **kwargs): |
|
"""BuilderConfig for WaterFlowCounter. |
|
Args: |
|
data_url: `string`, url to download the photos. |
|
metadata_urls: instance segmentation regions and description |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(WaterFlowCounterConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.data_url = data_url |
|
self.metadata_url = metadata_url |
|
|
|
|
|
|
|
class WaterFlowCounter(datasets.GeneratorBasedBuilder): |
|
"""WaterFlowCounter Images dataset""" |
|
|
|
BUILDER_CONFIGS = [ |
|
WaterFlowCounterConfig( |
|
name="WFCR_full", |
|
description="Full dataset which contains coordinates and names of regions and information about rotation", |
|
data_url={ |
|
"train": "data/train_photos.zip", |
|
"test": "data/test_photos.zip", |
|
}, |
|
metadata_url={ |
|
'full': "data/WaterFlowCounter.json" |
|
} |
|
) |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"image_id": datasets.Value("int64"), |
|
"image": datasets.Image(), |
|
"width": datasets.Value("int32"), |
|
"height": datasets.Value("int32"), |
|
"objects": datasets.Sequence( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"area": datasets.Value("int64"), |
|
"bbox": datasets.Sequence(datasets.Value("float32"), length=4), |
|
"category": datasets.ClassLabel(names=_REGION_NAME), |
|
} |
|
), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_files = dl_manager.download_and_extract(self.config.data_url) |
|
meta_file = dl_manager.download(self.config.metadata_url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"folder_dir": data_files["train"], |
|
"metadata_path": meta_file['full'] |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"folder_dir": data_files["test"], |
|
"metadata_path": meta_file['full'] |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, folder_dir, metadata_path): |
|
name_to_id = {} |
|
rotation_to_id = {} |
|
|
|
for indx, name in enumerate(_REGION_NAME): |
|
name_to_id[name] = indx |
|
|
|
for indx, name in enumerate(_REGION_ROTETION): |
|
rotation_to_id[name] = indx |
|
|
|
|
|
with open(metadata_path, "r", encoding='utf-8') as f: |
|
annotations = json.load(f) |
|
|
|
idx = 0 |
|
id = 0 |
|
|
|
for file in os.listdir(folder_dir): |
|
filepath = os.path.join(folder_dir, file) |
|
|
|
with open(filepath, "rb") as f: |
|
image_bytes = f.read() |
|
|
|
image = Image.open(filepath) |
|
width, height = image.size |
|
|
|
all_bbox = [] |
|
all_area = [] |
|
all_segmentation = [] |
|
names = [] |
|
rotated = [] |
|
ids = [] |
|
|
|
for el in annotations['_via_img_metadata']: |
|
|
|
if annotations['_via_img_metadata'][el]['filename'] == file: |
|
|
|
for region in annotations['_via_img_metadata'][el]['regions']: |
|
ids.append(id) |
|
id += 1 |
|
all_x = region['shape_attributes']['all_points_x'] |
|
all_y = region['shape_attributes']['all_points_y'] |
|
x_min = min(all_x) |
|
y_min = min(all_y) |
|
x_max = max(all_x) |
|
y_max = max(all_y) |
|
p_width = x_max - x_min |
|
p_height = y_max - y_min |
|
bbox = [x_min, y_min, p_width, p_height ] |
|
area = p_width * p_height |
|
segmentation = list(zip(all_x, all_y)) |
|
|
|
all_bbox.append(bbox) |
|
all_area.append(area) |
|
all_segmentation.append(segmentation) |
|
|
|
for name in list(region['region_attributes']['name'].keys()): |
|
names.append(name_to_id[name]) |
|
|
|
if len(names) > 3: |
|
names = names[:-3] |
|
''' |
|
try: |
|
for rot in list(region['region_attributes']['rotated'].keys()): |
|
rotated.append(rotation_to_id[rot]) |
|
except: |
|
rotated.append(int(region['region_attributes']['rotated'])) |
|
|
|
''' |
|
|
|
|
|
yield idx, { |
|
"image_id": idx, |
|
"image": {"path": filepath, "bytes": image_bytes}, |
|
"width": width, |
|
"height": height, |
|
"objects": { |
|
"id": ids, |
|
"area": all_area, |
|
"bbox": all_bbox, |
|
"category":names, |
|
} |
|
} |
|
idx += 1 |
|
|