|
"""Custom classification dataset.""" |
|
|
|
import csv |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
""" |
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
_TRAIN_DOWNLOAD_URL = "train.csv" |
|
_TEST_DOWNLOAD_URL = "test.csv" |
|
|
|
_DATASET_MAP = {"NEGATIVE": 0, "POSITIVE": 1} |
|
|
|
|
|
class Custom(datasets.GeneratorBasedBuilder): |
|
"""Custom classification dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel( |
|
names=["NEGATIVE", "POSITIVE"] |
|
), |
|
} |
|
), |
|
homepage="", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) |
|
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": test_path} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate Custom examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader( |
|
csv_file, |
|
quotechar='"', |
|
delimiter=",", |
|
quoting=csv.QUOTE_ALL, |
|
skipinitialspace=True, |
|
) |
|
for id_, row in enumerate(csv_reader): |
|
text, label = row |
|
label = _DATASET_MAP[label] |
|
yield id_, {"text": text, "label": label} |
|
|