Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
joaomonteirof commited on
Commit
04aed4c
·
1 Parent(s): f0ac1fd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -1016
README.md CHANGED
@@ -1,1038 +1,90 @@
1
  ---
 
2
  dataset_info:
3
  features:
 
 
 
 
 
 
 
 
 
 
4
  - name: image
5
  dtype: image
6
  - name: label
7
- dtype:
8
- class_label:
9
- names:
10
- '0': n01440764
11
- '1': n01443537
12
- '2': n01484850
13
- '3': n01491361
14
- '4': n01494475
15
- '5': n01496331
16
- '6': n01498041
17
- '7': n01514668
18
- '8': n01514859
19
- '9': n01518878
20
- '10': n01530575
21
- '11': n01531178
22
- '12': n01532829
23
- '13': n01534433
24
- '14': n01537544
25
- '15': n01558993
26
- '16': n01560419
27
- '17': n01580077
28
- '18': n01582220
29
- '19': n01592084
30
- '20': n01601694
31
- '21': n01608432
32
- '22': n01614925
33
- '23': n01616318
34
- '24': n01622779
35
- '25': n01629819
36
- '26': n01630670
37
- '27': n01631663
38
- '28': n01632458
39
- '29': n01632777
40
- '30': n01641577
41
- '31': n01644373
42
- '32': n01644900
43
- '33': n01664065
44
- '34': n01665541
45
- '35': n01667114
46
- '36': n01667778
47
- '37': n01669191
48
- '38': n01675722
49
- '39': n01677366
50
- '40': n01682714
51
- '41': n01685808
52
- '42': n01687978
53
- '43': n01688243
54
- '44': n01689811
55
- '45': n01692333
56
- '46': n01693334
57
- '47': n01694178
58
- '48': n01695060
59
- '49': n01697457
60
- '50': n01698640
61
- '51': n01704323
62
- '52': n01728572
63
- '53': n01728920
64
- '54': n01729322
65
- '55': n01729977
66
- '56': n01734418
67
- '57': n01735189
68
- '58': n01737021
69
- '59': n01739381
70
- '60': n01740131
71
- '61': n01742172
72
- '62': n01744401
73
- '63': n01748264
74
- '64': n01749939
75
- '65': n01751748
76
- '66': n01753488
77
- '67': n01755581
78
- '68': n01756291
79
- '69': n01768244
80
- '70': n01770081
81
- '71': n01770393
82
- '72': n01773157
83
- '73': n01773549
84
- '74': n01773797
85
- '75': n01774384
86
- '76': n01774750
87
- '77': n01775062
88
- '78': n01776313
89
- '79': n01784675
90
- '80': n01795545
91
- '81': n01796340
92
- '82': n01797886
93
- '83': n01798484
94
- '84': n01806143
95
- '85': n01806567
96
- '86': n01807496
97
- '87': n01817953
98
- '88': n01818515
99
- '89': n01819313
100
- '90': n01820546
101
- '91': n01824575
102
- '92': n01828970
103
- '93': n01829413
104
- '94': n01833805
105
- '95': n01843065
106
- '96': n01843383
107
- '97': n01847000
108
- '98': n01855032
109
- '99': n01855672
110
- '100': n01860187
111
- '101': n01871265
112
- '102': n01872401
113
- '103': n01873310
114
- '104': n01877812
115
- '105': n01882714
116
- '106': n01883070
117
- '107': n01910747
118
- '108': n01914609
119
- '109': n01917289
120
- '110': n01924916
121
- '111': n01930112
122
- '112': n01943899
123
- '113': n01944390
124
- '114': n01945685
125
- '115': n01950731
126
- '116': n01955084
127
- '117': n01968897
128
- '118': n01978287
129
- '119': n01978455
130
- '120': n01980166
131
- '121': n01981276
132
- '122': n01983481
133
- '123': n01984695
134
- '124': n01985128
135
- '125': n01986214
136
- '126': n01990800
137
- '127': n02002556
138
- '128': n02002724
139
- '129': n02006656
140
- '130': n02007558
141
- '131': n02009229
142
- '132': n02009912
143
- '133': n02011460
144
- '134': n02012849
145
- '135': n02013706
146
- '136': n02017213
147
- '137': n02018207
148
- '138': n02018795
149
- '139': n02025239
150
- '140': n02027492
151
- '141': n02028035
152
- '142': n02033041
153
- '143': n02037110
154
- '144': n02051845
155
- '145': n02056570
156
- '146': n02058221
157
- '147': n02066245
158
- '148': n02071294
159
- '149': n02074367
160
- '150': n02077923
161
- '151': n02085620
162
- '152': n02085782
163
- '153': n02085936
164
- '154': n02086079
165
- '155': n02086240
166
- '156': n02086646
167
- '157': n02086910
168
- '158': n02087046
169
- '159': n02087394
170
- '160': n02088094
171
- '161': n02088238
172
- '162': n02088364
173
- '163': n02088466
174
- '164': n02088632
175
- '165': n02089078
176
- '166': n02089867
177
- '167': n02089973
178
- '168': n02090379
179
- '169': n02090622
180
- '170': n02090721
181
- '171': n02091032
182
- '172': n02091134
183
- '173': n02091244
184
- '174': n02091467
185
- '175': n02091635
186
- '176': n02091831
187
- '177': n02092002
188
- '178': n02092339
189
- '179': n02093256
190
- '180': n02093428
191
- '181': n02093647
192
- '182': n02093754
193
- '183': n02093859
194
- '184': n02093991
195
- '185': n02094114
196
- '186': n02094258
197
- '187': n02094433
198
- '188': n02095314
199
- '189': n02095570
200
- '190': n02095889
201
- '191': n02096051
202
- '192': n02096177
203
- '193': n02096294
204
- '194': n02096437
205
- '195': n02096585
206
- '196': n02097047
207
- '197': n02097130
208
- '198': n02097209
209
- '199': n02097298
210
- '200': n02097474
211
- '201': n02097658
212
- '202': n02098105
213
- '203': n02098286
214
- '204': n02098413
215
- '205': n02099267
216
- '206': n02099429
217
- '207': n02099601
218
- '208': n02099712
219
- '209': n02099849
220
- '210': n02100236
221
- '211': n02100583
222
- '212': n02100735
223
- '213': n02100877
224
- '214': n02101006
225
- '215': n02101388
226
- '216': n02101556
227
- '217': n02102040
228
- '218': n02102177
229
- '219': n02102318
230
- '220': n02102480
231
- '221': n02102973
232
- '222': n02104029
233
- '223': n02104365
234
- '224': n02105056
235
- '225': n02105162
236
- '226': n02105251
237
- '227': n02105412
238
- '228': n02105505
239
- '229': n02105641
240
- '230': n02105855
241
- '231': n02106030
242
- '232': n02106166
243
- '233': n02106382
244
- '234': n02106550
245
- '235': n02106662
246
- '236': n02107142
247
- '237': n02107312
248
- '238': n02107574
249
- '239': n02107683
250
- '240': n02107908
251
- '241': n02108000
252
- '242': n02108089
253
- '243': n02108422
254
- '244': n02108551
255
- '245': n02108915
256
- '246': n02109047
257
- '247': n02109525
258
- '248': n02109961
259
- '249': n02110063
260
- '250': n02110185
261
- '251': n02110341
262
- '252': n02110627
263
- '253': n02110806
264
- '254': n02110958
265
- '255': n02111129
266
- '256': n02111277
267
- '257': n02111500
268
- '258': n02111889
269
- '259': n02112018
270
- '260': n02112137
271
- '261': n02112350
272
- '262': n02112706
273
- '263': n02113023
274
- '264': n02113186
275
- '265': n02113624
276
- '266': n02113712
277
- '267': n02113799
278
- '268': n02113978
279
- '269': n02114367
280
- '270': n02114548
281
- '271': n02114712
282
- '272': n02114855
283
- '273': n02115641
284
- '274': n02115913
285
- '275': n02116738
286
- '276': n02117135
287
- '277': n02119022
288
- '278': n02119789
289
- '279': n02120079
290
- '280': n02120505
291
- '281': n02123045
292
- '282': n02123159
293
- '283': n02123394
294
- '284': n02123597
295
- '285': n02124075
296
- '286': n02125311
297
- '287': n02127052
298
- '288': n02128385
299
- '289': n02128757
300
- '290': n02128925
301
- '291': n02129165
302
- '292': n02129604
303
- '293': n02130308
304
- '294': n02132136
305
- '295': n02133161
306
- '296': n02134084
307
- '297': n02134418
308
- '298': n02137549
309
- '299': n02138441
310
- '300': n02165105
311
- '301': n02165456
312
- '302': n02167151
313
- '303': n02168699
314
- '304': n02169497
315
- '305': n02172182
316
- '306': n02174001
317
- '307': n02177972
318
- '308': n02190166
319
- '309': n02206856
320
- '310': n02219486
321
- '311': n02226429
322
- '312': n02229544
323
- '313': n02231487
324
- '314': n02233338
325
- '315': n02236044
326
- '316': n02256656
327
- '317': n02259212
328
- '318': n02264363
329
- '319': n02268443
330
- '320': n02268853
331
- '321': n02276258
332
- '322': n02277742
333
- '323': n02279972
334
- '324': n02280649
335
- '325': n02281406
336
- '326': n02281787
337
- '327': n02317335
338
- '328': n02319095
339
- '329': n02321529
340
- '330': n02325366
341
- '331': n02326432
342
- '332': n02328150
343
- '333': n02342885
344
- '334': n02346627
345
- '335': n02356798
346
- '336': n02361337
347
- '337': n02363005
348
- '338': n02364673
349
- '339': n02389026
350
- '340': n02391049
351
- '341': n02395406
352
- '342': n02396427
353
- '343': n02397096
354
- '344': n02398521
355
- '345': n02403003
356
- '346': n02408429
357
- '347': n02410509
358
- '348': n02412080
359
- '349': n02415577
360
- '350': n02417914
361
- '351': n02422106
362
- '352': n02422699
363
- '353': n02423022
364
- '354': n02437312
365
- '355': n02437616
366
- '356': n02441942
367
- '357': n02442845
368
- '358': n02443114
369
- '359': n02443484
370
- '360': n02444819
371
- '361': n02445715
372
- '362': n02447366
373
- '363': n02454379
374
- '364': n02457408
375
- '365': n02480495
376
- '366': n02480855
377
- '367': n02481823
378
- '368': n02483362
379
- '369': n02483708
380
- '370': n02484975
381
- '371': n02486261
382
- '372': n02486410
383
- '373': n02487347
384
- '374': n02488291
385
- '375': n02488702
386
- '376': n02489166
387
- '377': n02490219
388
- '378': n02492035
389
- '379': n02492660
390
- '380': n02493509
391
- '381': n02493793
392
- '382': n02494079
393
- '383': n02497673
394
- '384': n02500267
395
- '385': n02504013
396
- '386': n02504458
397
- '387': n02509815
398
- '388': n02510455
399
- '389': n02514041
400
- '390': n02526121
401
- '391': n02536864
402
- '392': n02606052
403
- '393': n02607072
404
- '394': n02640242
405
- '395': n02641379
406
- '396': n02643566
407
- '397': n02655020
408
- '398': n02666196
409
- '399': n02667093
410
- '400': n02669723
411
- '401': n02672831
412
- '402': n02676566
413
- '403': n02687172
414
- '404': n02690373
415
- '405': n02692877
416
- '406': n02699494
417
- '407': n02701002
418
- '408': n02704792
419
- '409': n02708093
420
- '410': n02727426
421
- '411': n02730930
422
- '412': n02747177
423
- '413': n02749479
424
- '414': n02769748
425
- '415': n02776631
426
- '416': n02777292
427
- '417': n02782093
428
- '418': n02783161
429
- '419': n02786058
430
- '420': n02787622
431
- '421': n02788148
432
- '422': n02790996
433
- '423': n02791124
434
- '424': n02791270
435
- '425': n02793495
436
- '426': n02794156
437
- '427': n02795169
438
- '428': n02797295
439
- '429': n02799071
440
- '430': n02802426
441
- '431': n02804414
442
- '432': n02804610
443
- '433': n02807133
444
- '434': n02808304
445
- '435': n02808440
446
- '436': n02814533
447
- '437': n02814860
448
- '438': n02815834
449
- '439': n02817516
450
- '440': n02823428
451
- '441': n02823750
452
- '442': n02825657
453
- '443': n02834397
454
- '444': n02835271
455
- '445': n02837789
456
- '446': n02840245
457
- '447': n02841315
458
- '448': n02843684
459
- '449': n02859443
460
- '450': n02860847
461
- '451': n02865351
462
- '452': n02869837
463
- '453': n02870880
464
- '454': n02871525
465
- '455': n02877765
466
- '456': n02879718
467
- '457': n02883205
468
- '458': n02892201
469
- '459': n02892767
470
- '460': n02894605
471
- '461': n02895154
472
- '462': n02906734
473
- '463': n02909870
474
- '464': n02910353
475
- '465': n02916936
476
- '466': n02917067
477
- '467': n02927161
478
- '468': n02930766
479
- '469': n02939185
480
- '470': n02948072
481
- '471': n02950826
482
- '472': n02951358
483
- '473': n02951585
484
- '474': n02963159
485
- '475': n02965783
486
- '476': n02966193
487
- '477': n02966687
488
- '478': n02971356
489
- '479': n02974003
490
- '480': n02977058
491
- '481': n02978881
492
- '482': n02979186
493
- '483': n02980441
494
- '484': n02981792
495
- '485': n02988304
496
- '486': n02992211
497
- '487': n02992529
498
- '488': n02999410
499
- '489': n03000134
500
- '490': n03000247
501
- '491': n03000684
502
- '492': n03014705
503
- '493': n03016953
504
- '494': n03017168
505
- '495': n03018349
506
- '496': n03026506
507
- '497': n03028079
508
- '498': n03032252
509
- '499': n03041632
510
- '500': n03042490
511
- '501': n03045698
512
- '502': n03047690
513
- '503': n03062245
514
- '504': n03063599
515
- '505': n03063689
516
- '506': n03065424
517
- '507': n03075370
518
- '508': n03085013
519
- '509': n03089624
520
- '510': n03095699
521
- '511': n03100240
522
- '512': n03109150
523
- '513': n03110669
524
- '514': n03124043
525
- '515': n03124170
526
- '516': n03125729
527
- '517': n03126707
528
- '518': n03127747
529
- '519': n03127925
530
- '520': n03131574
531
- '521': n03133878
532
- '522': n03134739
533
- '523': n03141823
534
- '524': n03146219
535
- '525': n03160309
536
- '526': n03179701
537
- '527': n03180011
538
- '528': n03187595
539
- '529': n03188531
540
- '530': n03196217
541
- '531': n03197337
542
- '532': n03201208
543
- '533': n03207743
544
- '534': n03207941
545
- '535': n03208938
546
- '536': n03216828
547
- '537': n03218198
548
- '538': n03220513
549
- '539': n03223299
550
- '540': n03240683
551
- '541': n03249569
552
- '542': n03250847
553
- '543': n03255030
554
- '544': n03259280
555
- '545': n03271574
556
- '546': n03272010
557
- '547': n03272562
558
- '548': n03290653
559
- '549': n03291819
560
- '550': n03297495
561
- '551': n03314780
562
- '552': n03325584
563
- '553': n03337140
564
- '554': n03344393
565
- '555': n03345487
566
- '556': n03347037
567
- '557': n03355925
568
- '558': n03372029
569
- '559': n03376595
570
- '560': n03379051
571
- '561': n03384352
572
- '562': n03388043
573
- '563': n03388183
574
- '564': n03388549
575
- '565': n03393912
576
- '566': n03394916
577
- '567': n03400231
578
- '568': n03404251
579
- '569': n03417042
580
- '570': n03424325
581
- '571': n03425413
582
- '572': n03443371
583
- '573': n03444034
584
- '574': n03445777
585
- '575': n03445924
586
- '576': n03447447
587
- '577': n03447721
588
- '578': n03450230
589
- '579': n03452741
590
- '580': n03457902
591
- '581': n03459775
592
- '582': n03461385
593
- '583': n03467068
594
- '584': n03476684
595
- '585': n03476991
596
- '586': n03478589
597
- '587': n03481172
598
- '588': n03482405
599
- '589': n03483316
600
- '590': n03485407
601
- '591': n03485794
602
- '592': n03492542
603
- '593': n03494278
604
- '594': n03495258
605
- '595': n03496892
606
- '596': n03498962
607
- '597': n03527444
608
- '598': n03529860
609
- '599': n03530642
610
- '600': n03532672
611
- '601': n03534580
612
- '602': n03535780
613
- '603': n03538406
614
- '604': n03544143
615
- '605': n03584254
616
- '606': n03584829
617
- '607': n03590841
618
- '608': n03594734
619
- '609': n03594945
620
- '610': n03595614
621
- '611': n03598930
622
- '612': n03599486
623
- '613': n03602883
624
- '614': n03617480
625
- '615': n03623198
626
- '616': n03627232
627
- '617': n03630383
628
- '618': n03633091
629
- '619': n03637318
630
- '620': n03642806
631
- '621': n03649909
632
- '622': n03657121
633
- '623': n03658185
634
- '624': n03661043
635
- '625': n03662601
636
- '626': n03666591
637
- '627': n03670208
638
- '628': n03673027
639
- '629': n03676483
640
- '630': n03680355
641
- '631': n03690938
642
- '632': n03691459
643
- '633': n03692522
644
- '634': n03697007
645
- '635': n03706229
646
- '636': n03709823
647
- '637': n03710193
648
- '638': n03710637
649
- '639': n03710721
650
- '640': n03717622
651
- '641': n03720891
652
- '642': n03721384
653
- '643': n03724870
654
- '644': n03729826
655
- '645': n03733131
656
- '646': n03733281
657
- '647': n03733805
658
- '648': n03742115
659
- '649': n03743016
660
- '650': n03759954
661
- '651': n03761084
662
- '652': n03763968
663
- '653': n03764736
664
- '654': n03769881
665
- '655': n03770439
666
- '656': n03770679
667
- '657': n03773504
668
- '658': n03775071
669
- '659': n03775546
670
- '660': n03776460
671
- '661': n03777568
672
- '662': n03777754
673
- '663': n03781244
674
- '664': n03782006
675
- '665': n03785016
676
- '666': n03786901
677
- '667': n03787032
678
- '668': n03788195
679
- '669': n03788365
680
- '670': n03791053
681
- '671': n03792782
682
- '672': n03792972
683
- '673': n03793489
684
- '674': n03794056
685
- '675': n03796401
686
- '676': n03803284
687
- '677': n03804744
688
- '678': n03814639
689
- '679': n03814906
690
- '680': n03825788
691
- '681': n03832673
692
- '682': n03837869
693
- '683': n03838899
694
- '684': n03840681
695
- '685': n03841143
696
- '686': n03843555
697
- '687': n03854065
698
- '688': n03857828
699
- '689': n03866082
700
- '690': n03868242
701
- '691': n03868863
702
- '692': n03871628
703
- '693': n03873416
704
- '694': n03874293
705
- '695': n03874599
706
- '696': n03876231
707
- '697': n03877472
708
- '698': n03877845
709
- '699': n03884397
710
- '700': n03887697
711
- '701': n03888257
712
- '702': n03888605
713
- '703': n03891251
714
- '704': n03891332
715
- '705': n03895866
716
- '706': n03899768
717
- '707': n03902125
718
- '708': n03903868
719
- '709': n03908618
720
- '710': n03908714
721
- '711': n03916031
722
- '712': n03920288
723
- '713': n03924679
724
- '714': n03929660
725
- '715': n03929855
726
- '716': n03930313
727
- '717': n03930630
728
- '718': n03933933
729
- '719': n03935335
730
- '720': n03937543
731
- '721': n03938244
732
- '722': n03942813
733
- '723': n03944341
734
- '724': n03947888
735
- '725': n03950228
736
- '726': n03954731
737
- '727': n03956157
738
- '728': n03958227
739
- '729': n03961711
740
- '730': n03967562
741
- '731': n03970156
742
- '732': n03976467
743
- '733': n03976657
744
- '734': n03977966
745
- '735': n03980874
746
- '736': n03982430
747
- '737': n03983396
748
- '738': n03991062
749
- '739': n03992509
750
- '740': n03995372
751
- '741': n03998194
752
- '742': n04004767
753
- '743': n04005630
754
- '744': n04008634
755
- '745': n04009552
756
- '746': n04019541
757
- '747': n04023962
758
- '748': n04026417
759
- '749': n04033901
760
- '750': n04033995
761
- '751': n04037443
762
- '752': n04039381
763
- '753': n04040759
764
- '754': n04041544
765
- '755': n04044716
766
- '756': n04049303
767
- '757': n04065272
768
- '758': n04067472
769
- '759': n04069434
770
- '760': n04070727
771
- '761': n04074963
772
- '762': n04081281
773
- '763': n04086273
774
- '764': n04090263
775
- '765': n04099969
776
- '766': n04111531
777
- '767': n04116512
778
- '768': n04118538
779
- '769': n04118776
780
- '770': n04120489
781
- '771': n04125021
782
- '772': n04127249
783
- '773': n04131690
784
- '774': n04133789
785
- '775': n04136333
786
- '776': n04141076
787
- '777': n04141327
788
- '778': n04141975
789
- '779': n04146614
790
- '780': n04147183
791
- '781': n04149813
792
- '782': n04152593
793
- '783': n04153751
794
- '784': n04154565
795
- '785': n04162706
796
- '786': n04179913
797
- '787': n04192698
798
- '788': n04200800
799
- '789': n04201297
800
- '790': n04204238
801
- '791': n04204347
802
- '792': n04208210
803
- '793': n04209133
804
- '794': n04209239
805
- '795': n04228054
806
- '796': n04229816
807
- '797': n04235860
808
- '798': n04238763
809
- '799': n04239074
810
- '800': n04243546
811
- '801': n04251144
812
- '802': n04252077
813
- '803': n04252225
814
- '804': n04254120
815
- '805': n04254680
816
- '806': n04254777
817
- '807': n04258138
818
- '808': n04259630
819
- '809': n04263257
820
- '810': n04264628
821
- '811': n04265275
822
- '812': n04266014
823
- '813': n04270147
824
- '814': n04273569
825
- '815': n04275548
826
- '816': n04277352
827
- '817': n04285008
828
- '818': n04286575
829
- '819': n04296562
830
- '820': n04310018
831
- '821': n04311004
832
- '822': n04311174
833
- '823': n04317175
834
- '824': n04325704
835
- '825': n04326547
836
- '826': n04328186
837
- '827': n04330267
838
- '828': n04332243
839
- '829': n04335435
840
- '830': n04336792
841
- '831': n04344873
842
- '832': n04346328
843
- '833': n04347754
844
- '834': n04350905
845
- '835': n04355338
846
- '836': n04355933
847
- '837': n04356056
848
- '838': n04357314
849
- '839': n04366367
850
- '840': n04367480
851
- '841': n04370456
852
- '842': n04371430
853
- '843': n04371774
854
- '844': n04372370
855
- '845': n04376876
856
- '846': n04380533
857
- '847': n04389033
858
- '848': n04392985
859
- '849': n04398044
860
- '850': n04399382
861
- '851': n04404412
862
- '852': n04409515
863
- '853': n04417672
864
- '854': n04418357
865
- '855': n04423845
866
- '856': n04428191
867
- '857': n04429376
868
- '858': n04435653
869
- '859': n04442312
870
- '860': n04443257
871
- '861': n04447861
872
- '862': n04456115
873
- '863': n04458633
874
- '864': n04461696
875
- '865': n04462240
876
- '866': n04465501
877
- '867': n04467665
878
- '868': n04476259
879
- '869': n04479046
880
- '870': n04482393
881
- '871': n04483307
882
- '872': n04485082
883
- '873': n04486054
884
- '874': n04487081
885
- '875': n04487394
886
- '876': n04493381
887
- '877': n04501370
888
- '878': n04505470
889
- '879': n04507155
890
- '880': n04509417
891
- '881': n04515003
892
- '882': n04517823
893
- '883': n04522168
894
- '884': n04523525
895
- '885': n04525038
896
- '886': n04525305
897
- '887': n04532106
898
- '888': n04532670
899
- '889': n04536866
900
- '890': n04540053
901
- '891': n04542943
902
- '892': n04548280
903
- '893': n04548362
904
- '894': n04550184
905
- '895': n04552348
906
- '896': n04553703
907
- '897': n04554684
908
- '898': n04557648
909
- '899': n04560804
910
- '900': n04562935
911
- '901': n04579145
912
- '902': n04579432
913
- '903': n04584207
914
- '904': n04589890
915
- '905': n04590129
916
- '906': n04591157
917
- '907': n04591713
918
- '908': n04592741
919
- '909': n04596742
920
- '910': n04597913
921
- '911': n04599235
922
- '912': n04604644
923
- '913': n04606251
924
- '914': n04612504
925
- '915': n04613696
926
- '916': n06359193
927
- '917': n06596364
928
- '918': n06785654
929
- '919': n06794110
930
- '920': n06874185
931
- '921': n07248320
932
- '922': n07565083
933
- '923': n07579787
934
- '924': n07583066
935
- '925': n07584110
936
- '926': n07590611
937
- '927': n07613480
938
- '928': n07614500
939
- '929': n07615774
940
- '930': n07684084
941
- '931': n07693725
942
- '932': n07695742
943
- '933': n07697313
944
- '934': n07697537
945
- '935': n07711569
946
- '936': n07714571
947
- '937': n07714990
948
- '938': n07715103
949
- '939': n07716358
950
- '940': n07716906
951
- '941': n07717410
952
- '942': n07717556
953
- '943': n07718472
954
- '944': n07718747
955
- '945': n07720875
956
- '946': n07730033
957
- '947': n07734744
958
- '948': n07742313
959
- '949': n07745940
960
- '950': n07747607
961
- '951': n07749582
962
- '952': n07753113
963
- '953': n07753275
964
- '954': n07753592
965
- '955': n07754684
966
- '956': n07760859
967
- '957': n07768694
968
- '958': n07802026
969
- '959': n07831146
970
- '960': n07836838
971
- '961': n07860988
972
- '962': n07871810
973
- '963': n07873807
974
- '964': n07875152
975
- '965': n07880968
976
- '966': n07892512
977
- '967': n07920052
978
- '968': n07930864
979
- '969': n07932039
980
- '970': n09193705
981
- '971': n09229709
982
- '972': n09246464
983
- '973': n09256479
984
- '974': n09288635
985
- '975': n09332890
986
- '976': n09399592
987
- '977': n09421951
988
- '978': n09428293
989
- '979': n09468604
990
- '980': n09472597
991
- '981': n09835506
992
- '982': n10148035
993
- '983': n10565667
994
- '984': n11879895
995
- '985': n11939491
996
- '986': n12057211
997
- '987': n12144580
998
- '988': n12267677
999
- '989': n12620546
1000
- '990': n12768682
1001
- '991': n12985857
1002
- '992': n12998815
1003
- '993': n13037406
1004
- '994': n13040303
1005
- '995': n13044778
1006
- '996': n13052670
1007
- '997': n13054560
1008
- '998': n13133613
1009
- '999': n15075141
1010
- - name: original_filename
1011
- dtype: string
1012
- - name: original_hash
1013
  dtype: string
1014
  splits:
 
 
 
 
 
 
 
 
 
1015
  - name: synthetic_gan
1016
- num_bytes: 241798103.454
1017
  num_examples: 24999
1018
  - name: synthetic_diffusion
1019
- num_bytes: 282905025.0
1020
  num_examples: 25000
1021
  - name: adversarial_autoattack_resnet
1022
- num_bytes: 755454272.0
1023
  num_examples: 5000
1024
  - name: adversarial_autoattack_vit
1025
- num_bytes: 2217501074.0
1026
  num_examples: 5000
1027
  - name: adversarial_pgd_resnet
1028
- num_bytes: 755454473.0
1029
  num_examples: 5000
1030
  - name: adversarial_pgd_vit
1031
- num_bytes: 2217501084.0
1032
  num_examples: 5000
1033
- download_size: 443515256
1034
- dataset_size: 6470614031.454
 
 
 
 
 
 
 
1035
  ---
1036
- # Dataset Card for "PartialBROAD"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037
 
1038
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
  dataset_info:
4
  features:
5
+ - name: date_captured
6
+ dtype: string
7
+ - name: coco_url
8
+ dtype: string
9
+ - name: license_name
10
+ dtype: string
11
+ - name: license_url
12
+ dtype: string
13
+ - name: coco_id
14
+ dtype: string
15
  - name: image
16
  dtype: image
17
  - name: label
18
+ dtype: int64
19
+ - name: flickr_url
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  dtype: string
21
  splits:
22
+ - name: clean
23
+ num_bytes: 333801279.747
24
+ num_examples: 36157
25
+ - name: cocomagenet
26
+ num_bytes: 306403223
27
+ num_examples: 2000
28
+ - name: cocomagenet_mono
29
+ num_bytes: 18956338
30
+ num_examples: 2000
31
  - name: synthetic_gan
32
+ num_bytes: 242598071.454
33
  num_examples: 24999
34
  - name: synthetic_diffusion
35
+ num_bytes: 283705025
36
  num_examples: 25000
37
  - name: adversarial_autoattack_resnet
38
+ num_bytes: 40058245
39
  num_examples: 5000
40
  - name: adversarial_autoattack_vit
41
+ num_bytes: 35610460
42
  num_examples: 5000
43
  - name: adversarial_pgd_resnet
44
+ num_bytes: 65806170
45
  num_examples: 5000
46
  - name: adversarial_pgd_vit
47
+ num_bytes: 51803590
48
  num_examples: 5000
49
+ download_size: 1432934722
50
+ dataset_size: 1378742402.201
51
+ pretty_name: BROAD
52
+ size_categories:
53
+ - 10K<n<100K
54
+ tags:
55
+ - imagenet
56
+ - OOD detection
57
+ - distribution shift
58
  ---
59
+ # Partial dataset used to build BROAD (Benchmarking Resilience Over Anomaly Diversity )
60
+
61
+ Refer to [this repo ](https://github.com/ServiceNow/broad) to build the complete BROAD dataset.
62
+
63
+ The partial data included here contains synthetica images from BROAD and encoded unrecognizable images given by adversarial perturbations of imagenet samples. Decoding is implemented in the repo referred above.
64
+
65
+ ## Dataset Description
66
+
67
+ The BROAD dataset was introduced to benchmark OOD detection methods against a broader variety of distribution shifts in the paper
68
+ Expecting The Unexpected: Towards Broad Out-Of-Distribution Detection.
69
+
70
+ Each split of BROAD is designed to be close (but different) to the [ImageNet](https://www.image-net.org/index.php) distribution.
71
+
72
+ ### Dataset Summary
73
+
74
+ BROAD is comprised of 16 splits, 9 of which can be downloaded from this page. The remaining 7 can be obtained through external links.
75
+ We first describe the splits available from this hub, and then specify the external splits and how to get them. Please refer to Expecting The Unexpected: Towards Broad Out-Of-Distribution Detection for more detailed description of the data and its acquisition.
76
+
77
+ ### Included Splits
78
+
79
+ - **Clean** is comprised of 36157 images from the original validation set of ILSVRC2012. They are used as in-distribution in BROAD.
80
+ - **Adversarial Autoattack Resnet**, **Adversarial Autoattack ViT**, **Adversarial PGD Resnet** and **Adversarial PGD ViT** are splits each comprised of 5,000 adversarial perturbations of clean validation images, using a perturbation budget of 0.05 with the L-infinity norm. These attacks are computed against a trained ResNet-50 and a trained ViT-b/16. PGD uses 40 iterations and for Autoattack, only the attack model achieving the most confident misclassification is kept.
81
+ - **Synthetic Gan** and **Synthetic Diffusion** are each comprised of 25,000 synthetic images generated to imitate the ImageNet distribution. For Synthetic Gan, a conditional BigGan architecture was used to generate 25 artificial samples from each ImageNet class. For Synthetic diffusion, we leveraged stable diffusion models to generate 25 artificial samples per class using the prompt "High quality image of a {class_name}".
82
+ - **CoComageNet** is a novel split from the [CoCo](https://cocodataset.org/#home) dataset comprised of 2000 images, each featuring multiple distinct classes of ImageNet. Each image of CoComageNet thus features multiple objects, at least two of which have distinct ImageNet labels. More details on the construction of CoComageNet can be found in the paper.
83
+ - **CoComageNet-mono** is built similarly to CoComageNet, except each image only has one object with ImageNet label. It is designed as an ablation, to isolate the effect of having instances of multiple labels from other distributional shifts in CoComageNet.
84
+
85
+ ### External Splits
86
 
87
+ - **iNaturalist** is a split of the original [iNaturalist2017 dataset](https://github.com/visipedia/inat_comp/tree/master/2017) designed for OOD detection with ImageNet as in-distribution. It was introduced in [MOS: Towards Scaling Out-of-distribution Detection for Large Semantic Space](https://arxiv.org/pdf/2105.01879.pdf) and can be downloaded [here](http://pages.cs.wisc.edu/~huangrui/imagenet_ood_dataset/iNaturalist.tar.gz).
88
+ - **ImageNet-O** was introduced in [Natural Adversarial Examples](https://arxiv.org/pdf/1907.07174.pdf) and is comprised of natural examples that were selected for their high classification confidence by CNNs. It can be downloaded [here](https://people.eecs.berkeley.edu/~hendrycks/imagenet-o.tar).
89
+ - **OpenImage-O** is a subset of the OpenImage dataset that was built similarly to ImageNet-O in [ViM: Out-Of-Distribution with Virtual-logit Matching](https://arxiv.org/pdf/2203.10807.pdf). The file list can be accessed [here](https://github.com/haoqiwang/vim/blob/master/datalists/openimage_o.txt).
90
+ - **Defocus blur**, **Gaussian noise**, **Snow** and **Brightness** are all existing splits of the [ImageNet-C dataset](https://github.com/hendrycks/robustness). For BROAD, only the highest strength of corruption (5/5) is used.