spacemanidol commited on
Commit
6d1a3ae
1 Parent(s): c9db5fd

Upload 9 files

Browse files
scripts/.DS_Store ADDED
Binary file (6.15 kB). View file
 
scripts/README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TREC RAG baselines using arctic-l and arctic-m-v1.5
2
+
3
+ First, download the data including documents, queries, qrels.
4
+
5
+
6
+ ## Generate The doc and query embeddings
7
+
8
+ ```sh
9
+ bash get_data.sh
10
+ ```
11
+
12
+ Next, go ahead and convert the qrels format into json using the script below.
13
+
14
+ ```sh
15
+ python convert_qrels_to_json.py
16
+ ```
17
+
18
+ After that, go ahead and generate the query embeddings using the command below.
19
+
20
+ ```sh
21
+ python generate_query_embeddings.py
22
+ ```
23
+
24
+ After that, go ahead and generate embeddings for each shard. This will take ~ 20m per shard on a single H100. Feel free to parallelize. Make sure you have at least 600 gbs free.
25
+
26
+ ```sh
27
+ python generate_doc_embeddings.py
28
+ ```
29
+
30
+
31
+ ## Retrieval Runs
32
+ Once you have query and doc embeddings go ahead and retrieve. Given the size of the vectors we do this in shards. First we retrieve the top_n from each shard for each queryset on each shard. Feel free to parrelize.
33
+
34
+ ```sh
35
+ python retrieve_from_shard.py <path to embeddings> <query_embedding_prefix> <shard> <num_retrieved> <use_faiss>
36
+ ```
37
+ Alternatively, you can just run retrieve.sh in the background.
38
+
39
+ ```sh
40
+ python merge_retrieved_shard.py <shard_retrieved_results> <output_filename> <top_n_docs> <qrel json> <metric to get per_query breakdown>
41
+ ```
42
+ ## Retrieval Scores
43
+
44
+
45
+ ### NDCG@10
46
+ | NDCG @10 | | | | | | | |
47
+ |--------------------|--------|----------------|----------|---------------|---------------|---------------|---------------------------|
48
+ | Dataset | BM25 | GTE-Large-v1.5 | Arctic-L | Arctic-M-V1.5 | Arctic-M-V1.5 | Arctic-M-V1.5 | Cohere Embed3 - Trunc 128 |
49
+ | Dim | N/A | 1024 | 1024 | 768 | 256 | 128 | 128 |
50
+ | Deep Learning 2021 | 0.5778 | 0.71928 | 0.70682 | 0.6936 | 0.69392 | 0.60578 | 0.6962 |
51
+ | Deep Learning 2022 | 0.3576 | 0.53576 | 0.5444 | 0.55199 | 0.55608 | 0.47348 | 0.5396 |
52
+ | Deep Learning 2023 | 0.3356 | 0.46423 | 0.47372 | 0.46963 | 0.45196 | 0.32789 | 0.4473 |
53
+ | msmarcov2-dev | N/A | 0.3538 | 0.35844 | 0.346 | 0.34074 | 0.28499 | N/A |
54
+ | msmarcov2-dev2 | N/A | 0.34698 | 0.35821 | 0.34518 | 0.34339 | 0.29606 | N/A |
55
+ | Raggy Queries | 0.4227 | 0.56782 | 0.57759 | 0.57439 | 0.56686 | 0.47555 | N/A |
56
+
57
+ ### Recall @100
58
+ | Recall@100 | | | | | | | |
59
+ |--------------------|--------|----------------|----------|---------------|---------------|---------------|---------------------------|
60
+ | Dataset | BM25 | GTE-Large-v1.5 | Arctic-L | Arctic-M-V1.5 | Arctic-M-V1.5 | Arctic-M-V1.5 | Cohere Embed3 - Trunc 128 |
61
+ | Dim | N/A | 1024 | 1024 | 768 | 256 | 128 | 128 |
62
+ | Deep Learning 2021 | 0.3811 | 0.4156 | 0.41361 | 0.43 | 0.42245 | 0.3488 | 0.3914 |
63
+ | Deep Learning 2022 | 0.233 | 0.31173 | 0.31351 | 0.32125 | 0.3165 | 0.26714 | 0.3019 |
64
+ | Deep Learning 2023 | 0.3049 | 0.35236 | 0.34793 | 0.37622 | 0.36089 | 0.28314 | 0.3438 |
65
+ | msmarcov2-dev | 0.6683 | 0.85135 | 0.85131 | 0.85435 | 0.84985 | 0.76201 | N/A |
66
+ | msmarcov2-dev2 | 0.6771 | 0.84333 | 0.84767 | 0.8576 | 0.8526 | 0.78987 | N/A |
67
+ | Raggy Queries | 0.2807 | 0.35125 | 0.36228 | 0.36915 | 0.36149 | 0.30272 | N/A |
68
+ ### Recall @1000
69
+
70
+ | Recall@1000 | | | | | | | |
71
+ |--------------------|--------|----------------|----------|---------------|---------------|---------------|---------------------------|
72
+ | Dataset | BM25 | GTE-Large-v1.5 | Arctic-L | Arctic-M-V1.5 | Arctic-M-V1.5 | Arctic-M-V1.5 | Cohere Embed3 - Trunc 128 |
73
+ | Dim | N/A | 1024 | 1024 | 768 | 256 | 128 | 128 |
74
+ | Deep Learning 2021 | 0.7115 | 0.73185 | 0.7193 | 0.74895 | 0.73511 | 0.63253 | 0.7188 |
75
+ | Deep Learning 2022 | 0.479 | 0.55174 | 0.54566 | 0.55413 | 0.54499 | 0.47823 | 0.5558 |
76
+ | Deep Learning 2023 | 0.5852 | 0.6167 | 0.59577 | 0.62262 | 0.61199 | 0.49188 | 0.6025 |
77
+ | msmarcov2-dev | 0.8528 | 0.93549 | 0.93966 | 0.94156 | 0.94014 | 0.87705 | N/A |
78
+ | msmarcov2-dev2 | 0.8577 | 0.93997 | 0.93947 | 0.94277 | 0.94047 | 0.91683 | N/A |
79
+ | Raggy Queries | 0.5745 | 0.63515 | 0.63092 | 0.64527 | 0.63826 | 0.55002 | N/A |
scripts/convert_qrels_to_json.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ qrel_filenames = [
4
+ "qrels.dl21-doc-msmarco-v2.1.txt",
5
+ "qrels.msmarco-v2.1-doc.dev.txt",
6
+ "qrels.dl22-doc-msmarco-v2.1.txt",
7
+ "qrels.msmarco-v2.1-doc.dev2.txt",
8
+ "qrels.dl23-doc-msmarco-v2.1.txt",
9
+ "qrels.rag24.raggy-dev.txt",
10
+ ]
11
+ for filename in qrel_filenames:
12
+ short_filename = filename.split("qrels.")[1][:-4]
13
+ qrels: dict = {}
14
+ with open(filename, "r") as f:
15
+ for line in f:
16
+ qid, _, doc_id, label = line.strip().split()
17
+ if qid not in qrels:
18
+ qrels[qid] = {}
19
+ qrels[qid][doc_id] = int(label)
20
+ with open(f"{short_filename}.json", "w") as w:
21
+ w.write(json.dumps(qrels))
scripts/generate_doc_embeddings.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+
4
+ import pyarrow as pa
5
+ import pyarrow.parquet as pq
6
+ import torch
7
+ from tqdm import tqdm
8
+ from transformers import AutoModel, AutoTokenizer
9
+
10
+ file_name_prefix = "msmarco_v2.1_doc_segmented_"
11
+ path = "/home/mltraining/msmarco_v2.1_doc_segmented/"
12
+ model_names = [
13
+ "Snowflake/snowflake-arctic-embed-l",
14
+ "Snowflake/snowflake-arctic-embed-m-v1.5",
15
+ ]
16
+ for model_name in model_names:
17
+ print(f"Running doc embeddings using {model_name}")
18
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
19
+ model = AutoModel.from_pretrained(
20
+ model_name,
21
+ add_pooling_layer=False,
22
+ )
23
+ model.eval()
24
+ device = "cuda"
25
+ model = model.to(device)
26
+ dir_path = f"{path}{model_name.split('/')[1]}/"
27
+ if not os.path.exists(dir_path):
28
+ os.makedirs(dir_path)
29
+ for i in range(0, 59):
30
+ try:
31
+ filename = f"{path}{file_name_prefix}{i:02}.json"
32
+ filename_out = f"{dir_path}{i:02}.parquet"
33
+ print(f"Starting doc embeddings on {filename}")
34
+ data = []
35
+ ids = []
36
+ with open(filename, "r") as f:
37
+ for line in tqdm(f, desc="Processing JSONL file"):
38
+ j = json.loads(line)
39
+ doc_id = j["docid"]
40
+ text = j["segment"]
41
+ title = j["title"]
42
+ heading = j["headings"]
43
+ doc_text = "{} {}".format(title, text)
44
+ data.append(doc_text)
45
+ ids.append(doc_id)
46
+
47
+ print("Documents fully loaded")
48
+ batch_size = 512
49
+ chunks = [data[i: i + batch_size] for i in range(0, len(data), batch_size)]
50
+ embds = []
51
+ for chunk in tqdm(chunks, desc="inference"):
52
+ tokens = tokenizer(
53
+ chunk,
54
+ padding=True,
55
+ truncation=True,
56
+ return_tensors="pt",
57
+ max_length=512,
58
+ ).to(device)
59
+ with torch.autocast(
60
+ "cuda", dtype=torch.bfloat16
61
+ ), torch.inference_mode():
62
+ embds.append(
63
+ model(**tokens)[0][:, 0]
64
+ .cpu()
65
+ .to(torch.float32)
66
+ .detach()
67
+ .numpy()
68
+ )
69
+ del data, chunks
70
+ embds = [item for batch in embds for item in batch]
71
+ out_data = []
72
+ for emb, doc_id in zip(embds, ids):
73
+ out_data.append({"doc_id": doc_id, "embedding": emb})
74
+ del embds, ids
75
+ table = pa.Table.from_pylist(out_data)
76
+ del out_data
77
+ pq.write_table(table, filename_out)
78
+ except Exception:
79
+ pass
scripts/generate_query_embeddings.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pyarrow as pa
2
+ import pyarrow.parquet as pq
3
+ import torch
4
+ from transformers import AutoModel, AutoTokenizer
5
+
6
+ query_prefix = "Represent this sentence for searching relevant passages: "
7
+ topic_file_names = [
8
+ "topics.dl21.txt",
9
+ "topics.dl22.txt",
10
+ "topics.dl23.txt",
11
+ "topics.msmarco-v2-doc.dev.txt",
12
+ "topics.msmarco-v2-doc.dev2.txt",
13
+ "topics.rag24.raggy-dev.txt",
14
+ "topics.rag24.researchy-dev.txt",
15
+ ]
16
+ model_names = [
17
+ "Snowflake/snowflake-arctic-embed-l",
18
+ "Snowflake/snowflake-arctic-embed-m-v1.5",
19
+ ]
20
+
21
+ for model_name in model_names:
22
+ print(f"Running query embeddings using {model_name}")
23
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
24
+ model = AutoModel.from_pretrained(
25
+ model_name,
26
+ add_pooling_layer=False,
27
+ )
28
+ model.eval()
29
+ device = "cuda"
30
+ model = model.to(device)
31
+ for file_name in topic_file_names:
32
+ short_file_name = ".".join(file_name.split(".")[:-1])
33
+ data = []
34
+ print(f"starting on {file_name}")
35
+ with open(file_name, "r") as f:
36
+ for line in f:
37
+ line = line.strip().split("\t")
38
+ qid = line[0]
39
+ query_text = line[1]
40
+ queries_with_prefix = [
41
+ "{}{}".format(query_prefix, i) for i in [query_text]
42
+ ]
43
+ query_tokens = tokenizer(
44
+ queries_with_prefix,
45
+ padding=True,
46
+ truncation=True,
47
+ return_tensors="pt",
48
+ max_length=512,
49
+ )
50
+ # Compute token embeddings
51
+ with torch.autocast(
52
+ "cuda", dtype=torch.bfloat16
53
+ ), torch.inference_mode():
54
+ query_embeddings = (
55
+ model(**query_tokens.to(device))[0][:, 0]
56
+ .cpu()
57
+ .to(torch.float32)
58
+ .detach()
59
+ .numpy()[0]
60
+ )
61
+ item = {"id": qid, "text": query_text, "embedding": query_embeddings}
62
+ data.append(item)
63
+ table = pa.Table.from_pylist(data)
64
+ pq.write_table(
65
+ table, f"{model_name.split('/')[1]}-{short_file_name}.parquet"
66
+ )
scripts/get_data.sh ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Download and unzip docs
2
+ wget https://msmarco.z22.web.core.windows.net/msmarcoranking/msmarco_v2.1_doc_segmented.tar
3
+ tar -xf /home/mltraining/msmarco_v2.1_doc_segmented.tar
4
+ gunzip /home/mltraining/msmarco_v2.1_doc_segmented/*
5
+
6
+ # Download Queries
7
+ wget https://raw.githubusercontent.com/castorini/anserini-tools/master/topics-and-qrels/topics.msmarco-v2-doc.dev.txt
8
+ wget https://raw.githubusercontent.com/castorini/anserini-tools/master/topics-and-qrels/topics.msmarco-v2-doc.dev2.txt
9
+ wget https://raw.githubusercontent.com/castorini/anserini-tools/master/topics-and-qrels/topics.dl21.txt
10
+ wget https://raw.githubusercontent.com/castorini/anserini-tools/master/topics-and-qrels/topics.dl22.txt
11
+ wget https://raw.githubusercontent.com/castorini/anserini-tools/master/topics-and-qrels/topics.dl23.txt
12
+ wget https://raw.githubusercontent.com/castorini/anserini-tools/master/topics-and-qrels/topics.rag24.raggy-dev.txt
13
+ wget https://raw.githubusercontent.com/castorini/anserini-tools/master/topics-and-qrels/topics.rag24.researchy-dev.txt
14
+
15
+ # Download Qrels
16
+ wget https://raw.githubusercontent.com/castorini/anserini-tools/master/topics-and-qrels/qrels.rag24.raggy-dev.txt
17
+ wget https://raw.githubusercontent.com/castorini/anserini-tools/master/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt
18
+ wget https://raw.githubusercontent.com/castorini/anserini-tools/master/topics-and-qrels/qrels.dl22-doc-msmarco-v2.1.txt
19
+ wget https://raw.githubusercontent.com/castorini/anserini-tools/master/topics-and-qrels/qrels.dl23-doc-msmarco-v2.1.txt
20
+ wget https://raw.githubusercontent.com/castorini/anserini-tools/master/topics-and-qrels/qrels.msmarco-v2.1-doc.dev.txt
21
+ wget https://raw.githubusercontent.com/castorini/anserini-tools/master/topics-and-qrels/qrels.msmarco-v2.1-doc.dev2.txt
scripts/merge_retrieved_shard.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import json
3
+ import pickle
4
+ import sys
5
+ from typing import Dict
6
+
7
+ import numpy as np
8
+ from beir.retrieval.evaluation import EvaluateRetrieval
9
+
10
+
11
+ def load_qrels(filename: str) -> Dict:
12
+ with open(filename, "r") as f:
13
+ qrels = json.load(f)
14
+ return qrels
15
+
16
+
17
+ def merge_retrieved_shards(
18
+ suffix: str, output_file: str, top_n: int, qrels: dict, metric: str
19
+ ) -> None:
20
+ shard_files = glob.glob(f"*{suffix}")
21
+ print(f"There are {len(shard_files)} shards found")
22
+ merged_results = {}
23
+ print("Loading All shards")
24
+ for shard_file in shard_files:
25
+ print(f"Loading shard {shard_file} ")
26
+ with open(shard_file, "rb") as f:
27
+ shard_results = pickle.load(f)
28
+ for query_id, doc_scores in shard_results.items():
29
+ if query_id not in merged_results:
30
+ merged_results[query_id] = []
31
+ merged_results[query_id].extend(doc_scores.items())
32
+ print("Shards all loaded, merging results and sorting by score")
33
+ run = {}
34
+ per_query = []
35
+ for query_id, doc_scores in merged_results.items():
36
+ if query_id in qrels:
37
+ doc_score_dict = {}
38
+ for passage_id, score in doc_scores:
39
+ doc_id = passage_id.split("#")[
40
+ 0
41
+ ] # everything after # is the passage idenfitier withing a doc
42
+ if doc_id not in doc_score_dict:
43
+ doc_score_dict[doc_id] = (
44
+ -1
45
+ ) # scores are in range -1 to 1 on similairty so starting at -1 is floor
46
+ if score > doc_score_dict[doc_id]:
47
+ doc_score_dict[doc_id] = score
48
+ top_docs = sorted(doc_score_dict.items(), key=lambda x: x[1], reverse=True)[
49
+ :top_n
50
+ ]
51
+ run[query_id] = {
52
+ doc_id: round(score * 100, 2) for doc_id, score in top_docs
53
+ }
54
+ scores = EvaluateRetrieval.evaluate(
55
+ qrels, {query_id: run[query_id]}, k_values=[1, 3, 5, 10, 100, 1000]
56
+ )
57
+ scores = {k: v for d in scores for k, v in d.items()}
58
+ per_query.append(scores[metric])
59
+ print("Done merging and sorting results, Evaluating and saving run")
60
+ print(f"There are {len(run)} queries being evaled agaisnt qrels")
61
+ print(f"There were {len(shard_files)} shards found")
62
+ print(
63
+ f"Per Query Score average: {np.array(per_query).mean()} for {metric}. Individual scores{per_query}"
64
+ )
65
+ print("Overall Score Numbers:")
66
+ print(EvaluateRetrieval.evaluate(qrels, run, k_values=[1, 3, 5, 10, 100, 1000]))
67
+ with open(output_file, "wb") as w:
68
+ pickle.dump(run, w)
69
+
70
+
71
+ if __name__ == "__main__":
72
+ suffix = sys.argv[1]
73
+ output_file = sys.argv[2]
74
+ top_n = int(sys.argv[3])
75
+ qrel_filename = sys.argv[4]
76
+ metric = sys.argv[5]
77
+ merge_retrieved_shards(
78
+ suffix, output_file, top_n, load_qrels(qrel_filename), metric
79
+ )
scripts/retrieve.sh ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Define common parameters
4
+ base_path="gte-large/"
5
+ prefix="gte-large-en-v1.5"
6
+ num_shards=59
7
+ num_retrieved=100
8
+ dim=1024
9
+ use_faiss=1
10
+ # Loop through the required range
11
+ for i in $(seq 0 $num_shards)
12
+ do
13
+ python retrieve_from_shard.py $base_path $prefix $i $num_retrieved $dim $use_faiss
14
+ done
scripts/retrieve_from_shard.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import sys
3
+
4
+ import pyarrow.parquet as pq
5
+ import torch
6
+ import torch.nn.functional as F
7
+ import faiss
8
+ import numpy as np
9
+
10
+ def main(
11
+ path: str, query_prefix: str, shard_num: int, retrieval_depth: int, num_dim: int, use_faiss_gpu: bool = False
12
+ ) -> None:
13
+ query_filenames = [
14
+ "topics.dl21.parquet",
15
+ "topics.msmarco-v2-doc.dev2.parquet",
16
+ "topics.dl22.parquet",
17
+ "topics.rag24.raggy-dev.parquet",
18
+ "topics.dl23.parquet",
19
+ "topics.rag24.researchy-dev.parquet",
20
+ "topics.msmarco-v2-doc.dev.parquet",
21
+ ]
22
+ shard_filename = f"{path}{shard_num:02}.parquet"
23
+ print(f"Starting retrieval on Chunk {shard_num} for {shard_filename}")
24
+ doc_embeddings = []
25
+ idx2docid = {}
26
+ print("Reading Document Embeddings File")
27
+ table = pq.read_table(shard_filename)
28
+ print("Parquet file read, looping")
29
+ print(f"Chunk {shard_filename} loaded with {len(table)} documents")
30
+ for idx in range(len(table)):
31
+ doc_id = str(table[0][idx])
32
+ doc_embeddings.append(table[1][idx].as_py()[:num_dim])
33
+ idx2docid[idx] = doc_id
34
+
35
+ doc_embeddings = torch.tensor(doc_embeddings, dtype=torch.float32)
36
+ print(f"Embeddings loaded. Size {doc_embeddings.shape}")
37
+ doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1)
38
+ print("Document Embeddings normalized")
39
+ print("Document Embeddings Loaded into index")
40
+
41
+ if use_faiss_gpu:
42
+ # Create a FAISS index on GPU
43
+ index = faiss.IndexFlatL2(num_dim)
44
+ index = faiss.index_cpu_to_gpu(faiss.StandardGpuResources(), 0, index)
45
+ index.add(doc_embeddings.numpy())
46
+ else:
47
+ # Use numpy for similarity calculations
48
+ doc_embeddings_numpy = doc_embeddings.numpy()
49
+
50
+ for query_filename in query_filenames:
51
+ query_embeddings = []
52
+ retrieved_results = {}
53
+ idx2query_id = {}
54
+ query_filename_full = f"{path}{query_prefix}{query_filename}"
55
+ print(f"Retrieving from {shard_filename} for query set {query_filename_full}")
56
+ query_embeddings = []
57
+ print("Loading Query Embedding file")
58
+ table = pq.read_table(query_filename_full)
59
+ print("Done loading parquet query file")
60
+ for idx in range(len(table)):
61
+ query_id = str(table[0][idx])
62
+ query_embeddings.append(table[2][idx].as_py()[:num_dim])
63
+ idx2query_id[idx] = query_id
64
+ query_embeddings = torch.tensor(query_embeddings, dtype=torch.float32)
65
+ query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
66
+ print(f"Query Embeddings loaded with size {query_embeddings.shape}")
67
+
68
+ if use_faiss_gpu:
69
+ # Search the FAISS index on GPU
70
+ similarities, indices = index.search(query_embeddings.numpy(), retrieval_depth)
71
+ for idx in range(query_embeddings.shape[0]):
72
+ qid = idx2query_id[idx]
73
+ retrieved_results[qid] = {}
74
+ for jdx in range(retrieval_depth):
75
+ idx_doc = int(indices[idx, jdx])
76
+ doc_id = idx2docid[idx_doc]
77
+ retrieved_results[qid][doc_id] = float(similarities[idx, jdx])
78
+ else:
79
+ # Use numpy for similarity calculations
80
+ for idx in range(query_embeddings.shape[0]):
81
+ similarities = np.dot(query_embeddings[idx].numpy(), doc_embeddings_numpy.T)
82
+ top_n = np.argsort(-similarities)[:retrieval_depth]
83
+ qid = idx2query_id[idx]
84
+ retrieved_results[qid] = {}
85
+ for jdx in range(retrieval_depth):
86
+ idx_doc = int(top_n[jdx])
87
+ doc_id = idx2docid[idx_doc]
88
+ retrieved_results[qid][doc_id] = float(similarities[idx_doc])
89
+
90
+ with open(f"{shard_num}-{query_prefix}{num_dim}-{query_filename}", "wb") as w:
91
+ pickle.dump(retrieved_results, w)
92
+
93
+
94
+ if __name__ == "__main__":
95
+ path = sys.argv[1]
96
+ query_prefix = sys.argv[2]
97
+ shard_num = int(sys.argv[3])
98
+ retrieval_depth = int(sys.argv[4])
99
+ num_dim = int(sys.argv[5])
100
+ use_faiss_gpu = bool(int(sys.argv[6])) # 0 for numpy, 1 for FAISS GPU
101
+ main(path, query_prefix, shard_num, retrieval_depth, num_dim, use_faiss_gpu)