spacemanidol's picture
Upload 9 files
537f60a verified
raw
history blame
4.22 kB
import pickle
import sys
import pyarrow.parquet as pq
import torch
import torch.nn.functional as F
import faiss
import numpy as np
def main(
path: str, query_prefix: str, shard_num: int, retrieval_depth: int, num_dim: int, use_faiss_gpu: bool = False
) -> None:
query_filenames = [
"topics.dl21.parquet",
"topics.msmarco-v2-doc.dev2.parquet",
"topics.dl22.parquet",
"topics.rag24.raggy-dev.parquet",
"topics.dl23.parquet",
"topics.rag24.researchy-dev.parquet",
"topics.msmarco-v2-doc.dev.parquet",
]
shard_filename = f"{path}{shard_num:02}.parquet"
print(f"Starting retrieval on Chunk {shard_num} for {shard_filename}")
doc_embeddings = []
idx2docid = {}
print("Reading Document Embeddings File")
table = pq.read_table(shard_filename)
print("Parquet file read, looping")
print(f"Chunk {shard_filename} loaded with {len(table)} documents")
for idx in range(len(table)):
doc_id = str(table[0][idx])
doc_embeddings.append(table[1][idx].as_py()[:num_dim])
idx2docid[idx] = doc_id
doc_embeddings = torch.tensor(doc_embeddings, dtype=torch.float32)
print(f"Embeddings loaded. Size {doc_embeddings.shape}")
doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1)
print("Document Embeddings normalized")
print("Document Embeddings Loaded into index")
if use_faiss_gpu:
# Create a FAISS index on GPU
index = faiss.IndexFlatL2(num_dim)
index = faiss.index_cpu_to_gpu(faiss.StandardGpuResources(), 0, index)
index.add(doc_embeddings.numpy())
else:
# Use numpy for similarity calculations
doc_embeddings_numpy = doc_embeddings.numpy()
for query_filename in query_filenames:
query_embeddings = []
retrieved_results = {}
idx2query_id = {}
query_filename_full = f"{path}{query_prefix}{query_filename}"
print(f"Retrieving from {shard_filename} for query set {query_filename_full}")
query_embeddings = []
print("Loading Query Embedding file")
table = pq.read_table(query_filename_full)
print("Done loading parquet query file")
for idx in range(len(table)):
query_id = str(table[0][idx])
query_embeddings.append(table[2][idx].as_py()[:num_dim])
idx2query_id[idx] = query_id
query_embeddings = torch.tensor(query_embeddings, dtype=torch.float32)
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
print(f"Query Embeddings loaded with size {query_embeddings.shape}")
if use_faiss_gpu:
# Search the FAISS index on GPU
similarities, indices = index.search(query_embeddings.numpy(), retrieval_depth)
for idx in range(query_embeddings.shape[0]):
qid = idx2query_id[idx]
retrieved_results[qid] = {}
for jdx in range(retrieval_depth):
idx_doc = int(indices[idx, jdx])
doc_id = idx2docid[idx_doc]
retrieved_results[qid][doc_id] = float(similarities[idx, jdx])
else:
# Use numpy for similarity calculations
for idx in range(query_embeddings.shape[0]):
similarities = np.dot(query_embeddings[idx].numpy(), doc_embeddings_numpy.T)
top_n = np.argsort(-similarities)[:retrieval_depth]
qid = idx2query_id[idx]
retrieved_results[qid] = {}
for jdx in range(retrieval_depth):
idx_doc = int(top_n[jdx])
doc_id = idx2docid[idx_doc]
retrieved_results[qid][doc_id] = float(similarities[idx_doc])
with open(f"{shard_num}-{query_prefix}{num_dim}-{query_filename}", "wb") as w:
pickle.dump(retrieved_results, w)
if __name__ == "__main__":
path = sys.argv[1]
query_prefix = sys.argv[2]
shard_num = int(sys.argv[3])
retrieval_depth = int(sys.argv[4])
num_dim = int(sys.argv[5])
use_faiss_gpu = bool(int(sys.argv[6])) # 0 for numpy, 1 for FAISS GPU
main(path, query_prefix, shard_num, retrieval_depth, num_dim, use_faiss_gpu)