|
import pickle |
|
import sys |
|
|
|
import pyarrow.parquet as pq |
|
import torch |
|
import torch.nn.functional as F |
|
import faiss |
|
import numpy as np |
|
|
|
def main( |
|
path: str, query_prefix: str, shard_num: int, retrieval_depth: int, num_dim: int, use_faiss_gpu: bool = False |
|
) -> None: |
|
query_filenames = [ |
|
"topics.dl21.parquet", |
|
"topics.msmarco-v2-doc.dev2.parquet", |
|
"topics.dl22.parquet", |
|
"topics.rag24.raggy-dev.parquet", |
|
"topics.dl23.parquet", |
|
"topics.rag24.researchy-dev.parquet", |
|
"topics.msmarco-v2-doc.dev.parquet", |
|
] |
|
shard_filename = f"{path}{shard_num:02}.parquet" |
|
print(f"Starting retrieval on Chunk {shard_num} for {shard_filename}") |
|
doc_embeddings = [] |
|
idx2docid = {} |
|
print("Reading Document Embeddings File") |
|
table = pq.read_table(shard_filename) |
|
print("Parquet file read, looping") |
|
print(f"Chunk {shard_filename} loaded with {len(table)} documents") |
|
for idx in range(len(table)): |
|
doc_id = str(table[0][idx]) |
|
doc_embeddings.append(table[1][idx].as_py()[:num_dim]) |
|
idx2docid[idx] = doc_id |
|
|
|
doc_embeddings = torch.tensor(doc_embeddings, dtype=torch.float32) |
|
print(f"Embeddings loaded. Size {doc_embeddings.shape}") |
|
doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1) |
|
print("Document Embeddings normalized") |
|
print("Document Embeddings Loaded into index") |
|
|
|
if use_faiss_gpu: |
|
|
|
index = faiss.IndexFlatL2(num_dim) |
|
index = faiss.index_cpu_to_gpu(faiss.StandardGpuResources(), 0, index) |
|
index.add(doc_embeddings.numpy()) |
|
else: |
|
|
|
doc_embeddings_numpy = doc_embeddings.numpy() |
|
|
|
for query_filename in query_filenames: |
|
query_embeddings = [] |
|
retrieved_results = {} |
|
idx2query_id = {} |
|
query_filename_full = f"{path}{query_prefix}{query_filename}" |
|
print(f"Retrieving from {shard_filename} for query set {query_filename_full}") |
|
query_embeddings = [] |
|
print("Loading Query Embedding file") |
|
table = pq.read_table(query_filename_full) |
|
print("Done loading parquet query file") |
|
for idx in range(len(table)): |
|
query_id = str(table[0][idx]) |
|
query_embeddings.append(table[2][idx].as_py()[:num_dim]) |
|
idx2query_id[idx] = query_id |
|
query_embeddings = torch.tensor(query_embeddings, dtype=torch.float32) |
|
query_embeddings = F.normalize(query_embeddings, p=2, dim=1) |
|
print(f"Query Embeddings loaded with size {query_embeddings.shape}") |
|
|
|
if use_faiss_gpu: |
|
|
|
similarities, indices = index.search(query_embeddings.numpy(), retrieval_depth) |
|
for idx in range(query_embeddings.shape[0]): |
|
qid = idx2query_id[idx] |
|
retrieved_results[qid] = {} |
|
for jdx in range(retrieval_depth): |
|
idx_doc = int(indices[idx, jdx]) |
|
doc_id = idx2docid[idx_doc] |
|
retrieved_results[qid][doc_id] = float(similarities[idx, jdx]) |
|
else: |
|
|
|
for idx in range(query_embeddings.shape[0]): |
|
similarities = np.dot(query_embeddings[idx].numpy(), doc_embeddings_numpy.T) |
|
top_n = np.argsort(-similarities)[:retrieval_depth] |
|
qid = idx2query_id[idx] |
|
retrieved_results[qid] = {} |
|
for jdx in range(retrieval_depth): |
|
idx_doc = int(top_n[jdx]) |
|
doc_id = idx2docid[idx_doc] |
|
retrieved_results[qid][doc_id] = float(similarities[idx_doc]) |
|
|
|
with open(f"{shard_num}-{query_prefix}{num_dim}-{query_filename}", "wb") as w: |
|
pickle.dump(retrieved_results, w) |
|
|
|
|
|
if __name__ == "__main__": |
|
path = sys.argv[1] |
|
query_prefix = sys.argv[2] |
|
shard_num = int(sys.argv[3]) |
|
retrieval_depth = int(sys.argv[4]) |
|
num_dim = int(sys.argv[5]) |
|
use_faiss_gpu = bool(int(sys.argv[6])) |
|
main(path, query_prefix, shard_num, retrieval_depth, num_dim, use_faiss_gpu) |